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We Cannot Rewrite all Code in Safe Programming Languages

Existing systems span millions of
lines of code

Even new systems must integrate
existing, proven, optimized, and

tested libraries

→ Safe languages like Rust must be able to safely
interact with code written in foreign languages
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Host Application

✅ Memory Safe

Cryptography
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✅ Memory Safe
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A Type Safety Violation Breaks Memory Safety

  pub enum Message {
    Encrypted(bool, Vec<u8>),
    Unencrypted(CString),
  }

  extern "C" {
    fn aes_encrypt(buf: *mut u8, len: usize) -> bool;
  }

✅ Memory Safe
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Memory safety alone is not a useful
property when reasoning about the

composition of program components.

→ We must also consider
type safety and other invariants.
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Additional Invariants for a Foreign Function Call

  extern "C" {
    fn aes_encrypt(buf: *mut u8, len: usize) -> bool;
  }

✅ Memory Safe

Valid ValuesAliasing ⊕ Mutability
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extern "C"
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  -> bool

Direct FFI call:
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Omniglot mediates interactions between Rust and foreign code:
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println!("{}", ref_a); ⚠

22 / 32



Omniglot Rejects Unsound Mutable Aliasing

*mut T

*mut T: Arbitrary Pointer into Foreign Memory

23 / 32



Omniglot Rejects Unsound Mutable Aliasing

*mut T

*mut T: Arbitrary Pointer into Foreign Memory

OGMutRef<T>

upgrade()

OGMutRef<T>: Well-aligned, Mutably Accessible Object

23 / 32



Omniglot Rejects Unsound Mutable Aliasing

*mut T

*mut T: Arbitrary Pointer into Foreign Memory

OGMutRef<T>

upgrade()

OGMutRef<T>: Well-aligned, Mutably Accessible Object

write()

23 / 32



Omniglot Rejects Unsound Mutable Aliasing

*mut T

*mut T: Arbitrary Pointer into Foreign Memory

OGMutRef<T>

upgrade()

OGMutRef<T>: Well-aligned, Mutably Accessible Object

write()

OGVal<T>

validate()

&T

OGVal<T>: Object Conforming to Rust’s Requirements on Valid Values

23 / 32



Omniglot Rejects Unsound Mutable Aliasing

*mut T OGMutRef<T>

upgrade()
write()

OGVal<T>

validate()

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate()

23 / 32



Omniglot Rejects Unsound Mutable Aliasing

*mut T OGMutRef<T>

upgrade()
write()

OGVal<T>

validate()

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate() invoke()

⚠

23 / 32



Omniglot Rejects Unsound Mutable Aliasing

*mut T OGMutRef<T>

upgrade()
write()

OGVal<T>

validate()

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate() invoke()

free()

⚠⚠

23 / 32



Omniglot Rejects Unsound Mutable Aliasing

*mut T OGMutRef<T>

upgrade()
write()

OGVal<T>

validate()

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate() invoke()

free()

⚠⚠

Marker Types:
■ Allocation Scope
▲ Access Scope

 
□ △ Shared Ref.
■ ▲ Unique Ref.

23 / 32



Omniglot Rejects Unsound Mutable Aliasing

*mut T OGMutRef<T>

upgrade()
write()

OGVal<
  'access, T>

validate(△)

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate() invoke()

free()

⚠⚠

Marker Types:
■ Allocation Scope
▲ Access Scope

 
□ △ Shared Ref.
■ ▲ Unique Ref.

23 / 32



Omniglot Rejects Unsound Mutable Aliasing

*mut T
OGMutRef<
  'alloc , T>

upgrade()
write(▲)

OGVal<
  'alloc,
  'access, T>

validate(△)

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate() invoke(▲)

free()

⚠

Marker Types:
■ Allocation Scope
▲ Access Scope

 
□ △ Shared Ref.
■ ▲ Unique Ref.

23 / 32



Omniglot Rejects Unsound Mutable Aliasing

*mut T
OGMutRef<
  'alloc , T>

upgrade(□)
write(▲)

OGVal<
  'alloc,
  'access, T>

validate(△)

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate() invoke(▲)

free(■)

Marker Types:
■ Allocation Scope
▲ Access Scope

 
□ △ Shared Ref.
■ ▲ Unique Ref.

23 / 32



Omniglot Rejects Unsound Mutable Aliasing

libstack.so

#0

#1

#2

#3

#4void push(...)

int* peek()

int* pop()

let (alloc, access) = scopes!();

let ptr_a = peek(); // *mut #4
let ref_a = ptr_a.upgrade(&alloc);
let val_a = ptr_a.validate(&access);
println!("{}", val_a);
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let ptr_b = peek(); // *mut #4
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(x86 Protection Keys)
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26 / 32



Omniglot is Fast

Unsafe
IPC (Sandcrust)

0.0 0.5 1.0 1.5 2.0
Decoded Image Size (MB)

0
10
20
30
40
50

D
ec

od
e 

Ti
m

e 
(m

s)

27 / 32



Omniglot is Fast

Unsafe
IPC (Sandcrust)
Omniglot (MPK)

0.0 0.5 1.0 1.5 2.0
Decoded Image Size (MB)

0
10
20
30
40
50

D
ec

od
e 

Ti
m

e 
(m

s)

27 / 32



Key Takeaways

1. We Need Safe Foreign Function Interfaces



Key Takeaways

1. We Need Safe Foreign Function Interfaces

2. Memory Safety is Merely Table Stakes



Key Takeaways

1. We Need Safe Foreign Function Interfaces

2. Memory Safety is Merely Table Stakes

3. We Need Systematic Approaches to
Maintain Rust’s Invariants Across the FFI



We Need Systematic Approaches to Maintain Soundness Across the FFI

Detecting Undefined
Behavior across the FFI with

testing and fuzzing

Ian McCormack, et. al, 2025

29 / 32



We Need Systematic Approaches to Maintain Soundness Across the FFI

Formally modeling a
foreign languages’ types in

another language

David Patterson, et. al, 2017
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We Need Systematic Approaches to Maintain Soundness Across the FFI

Bridging high-level language
constructs for easier and
more expressive bindings

David Tolnay’s cxx crate,
wasm-bindgen, …
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We Need Systematic Approaches to Maintain Soundness Across the FFI

Omniglot mechanically maintains
soundness, without assumptions

about the foreign library’s behavior

• Interposes on Rust’s native foreign function interface,
• Integrates with memory isolation primitives, and
• Mediates all interactions with foreign code.

✅ Memory Safety ✅ Type Safety ✅ Efficiency
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Each solution has unique
tradeoffs; there is no one

size fits all.

Let’s work together to
bring guaranteed safety to
Rust, even though foreign
libraries are here to stay.
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Paper: Source code:

https://github.com/omniglot-rs/omniglot

Artifact reproduction instructions:
 10.5281/zenodo.15602886
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