
Memory Safety is Merely Table Stakes

Safe Interactions with Foreign
Languages through Omniglot

Leon Schuermann, Jack Toubes, Tyler Potyondy,
Pat Pannuto, Mae Milano, Amit Levy

1 / 32

Safety Bugs Plague Software for Decades

2 / 32

Safety Bugs Plague Software for Decades

2 / 32

Safety Bugs Plague Software for Decades

2 / 32

$ whoami

Hi, I’m Leon!
• Ph.D. Candidate at Princeton

3 / 32

$ whoami

Hi, I’m Leon!
• Ph.D. Candidate at Princeton

3 / 32

$ whoami

Hi, I’m Leon!
• Ph.D. Candidate at Princeton

• Core Maintainer of Tock OS

• Care About Software Being
Safe and Secure

3 / 32

Safe Programming Languages Eliminate Memory Safety Vulnerabilities

4 / 32

Safe Programming Languages Eliminate Memory Safety Vulnerabilities

5 / 32

Safe Programming Languages Eliminate Memory Safety Vulnerabilities

6 / 32

Safe Programming Languages Eliminate Memory Safety Vulnerabilities

7 / 32

We Cannot Rewrite all Code in Safe Programming Languages

Existing systems span millions of
lines of code

8 / 32

We Cannot Rewrite all Code in Safe Programming Languages

Existing systems span millions of
lines of code

Even new systems must integrate
existing, proven, optimized, and

tested libraries

8 / 32

We Cannot Rewrite all Code in Safe Programming Languages

Existing systems span millions of
lines of code

Even new systems must integrate
existing, proven, optimized, and

tested libraries

Rewriting is impractical: cost, time, domain
expertise, certification requirements, …

8 / 32

We Cannot Rewrite all Code in Safe Programming Languages

Existing systems span millions of
lines of code

Even new systems must integrate
existing, proven, optimized, and

tested libraries

→ Safe languages like Rust must be able to safely
interact with code written in foreign languages

8 / 32

1. What makes interactions with
foreign languages safe?

1. What makes interactions with
foreign languages safe?

2. Safely integrate arbitrary, untrusted
foreign libraries with Omniglot

1. What makes interactions with
foreign languages safe?

2. Safely integrate arbitrary, untrusted
foreign libraries with Omniglot

Memory Safety is Merely Table Stakes

Key Property: Memory Safety
10 / 32

Memory Safety is Merely Table Stakes

What does Memory Safety mean?
10 / 32

Memory Safety is Merely Table Stakes

“Memory safety [describes] whether software or a programming
language is designed to prevent memory bugs and vulnerabilities.”

—Internet Society

11 / 32

Memory Safety is Merely Table Stakes

“Memory safety [describes] whether software or a programming
language is designed to prevent memory bugs and vulnerabilities.”

—Internet Society

Relates to the absence of bugs like:

Buffer Overflows

11 / 32

Memory Safety is Merely Table Stakes

“Memory safety [describes] whether software or a programming
language is designed to prevent memory bugs and vulnerabilities.”

—Internet Society

Relates to the absence of bugs like:

Buffer Overflows Use-After-Free

11 / 32

Memory Safety is Merely Table Stakes

“Memory safety [describes] whether software or a programming
language is designed to prevent memory bugs and vulnerabilities.”

—Internet Society

Relates to the absence of bugs like:

Buffer Overflows Use-After-Free

Data Races

11 / 32

Memory Safety is Merely Table Stakes

“Memory safety [describes] whether software or a programming
language is designed to prevent memory bugs and vulnerabilities.”

—Internet Society

Relates to the absence of bugs like:

Buffer Overflows Use-After-Free

Data Races Uninitialized Accesses

11 / 32

Memory Safety is Merely Table Stakes

Host Application Cryptography
Library

12 / 32

Memory Safety is Merely Table Stakes

Host Application Cryptography
Library

Combined Program

+

12 / 32

Memory Safety is Merely Table Stakes

Host Application Cryptography
Library

Combined Program

+

✅ Memory Safe

12 / 32

Memory Safety is Merely Table Stakes

Host Application

✅ Memory Safe

Cryptography
Library

Combined Program

+

✅ Memory Safe

12 / 32

Memory Safety is Merely Table Stakes

Host Application

✅ Memory Safe

Cryptography
Library

✅ Memory Safe

Combined Program

+

✅ Memory Safe

12 / 32

Memory Safety is Merely Table Stakes

Host Application

✅ Memory Safe

Cryptography
Library

✅ Memory Safe

Combined Program

+

❌ Memory Safe

12 / 32

Memory Safety is Merely Table Stakes

Host Application Cryptography
Library

Combined Program

fn aes_encrypt()

12 / 32

Memory Safety is Merely Table Stakes

Host Application Cryptography
Library

Combined Program

fn aes_encrypt()

-> bool

12 / 32

Memory Safety is Merely Table Stakes

Host Application

✅ Memory Safe

Cryptography
Library

✅ Memory Safe

Combined Program

fn aes_encrypt()

Buffer

-> bool

12 / 32

A Type Safety Violation Breaks Memory Safety

 pub enum Message {
 Encrypted(bool, Vec<u8>),
 Unencrypted(CString),
 }

 extern "C" {
 fn aes_encrypt(buf: *mut u8, len: usize) -> bool;
 }

✅ Memory Safe

13 / 32

A Type Safety Violation Breaks Memory Safety

 pub enum Message {
 Encrypted(bool, Vec<u8>),
 Unencrypted(CString),
 }

 extern "C" {
 fn aes_encrypt(buf: *mut u8, len: usize) -> bool;
 }

✅ Memory Safe

13 / 32

A Type Safety Violation Breaks Memory Safety

 pub enum Message {
 Encrypted(bool, Vec<u8>),
 Unencrypted(CString),
 }

 enum bool {
 false = 0,
 true = 1,
 }

13 / 32

A Type Safety Violation Breaks Memory Safety

 pub enum Message {
 Encrypted(bool, Vec<u8>),
 Unencrypted(CString),
 }

 enum bool {
 false = 0,
 true = 1,
 }

0 bool (0 or 1) Vec Pointer Vec Capacity Vec Length

Message::Encrypted:

1 CString Pointer

Message::Unencrypted:

13 / 32

A Type Safety Violation Breaks Memory Safety

 pub enum Message {
 Encrypted(bool, Vec<u8>),
 Unencrypted(CString),
 }

 enum bool {
 false = 0,
 true = 1,
 }

0 bool (0 or 1) Vec Pointer Vec Capacity Vec Length

Message::Encrypted:

1 CString Pointer

Message::Unencrypted:

13 / 32

A Type Safety Violation Breaks Memory Safety

 pub enum Message {
 Encrypted(bool, Vec<u8>),
 Unencrypted(CString),
 }

 enum bool {
 false = 0,
 true = 1,
 }

0 bool (0 or 1) Vec Pointer Vec Capacity Vec Length

Message::Encrypted:

1 CString Pointer

Message::Unencrypted:

13 / 32

A Type Safety Violation Breaks Memory Safety

 pub enum Message {
 Encrypted(bool, Vec<u8>),
 Unencrypted(CString),
 }

 enum bool {
 false = 0,
 true = 1,
 }

0 bool (0 or 1) Vec Pointer Vec Capacity Vec Length

Message::Encrypted:

1 CString Pointer

Message::Unencrypted:

13 / 32

A Type Safety Violation Breaks Memory Safety

 pub enum Message {
 Encrypted(bool, Vec<u8>),
 Unencrypted(CString),
 }

 enum bool {
 false = 0,
 true = 1,
 }

0 bool (0 or 1) Vec Pointer Vec Capacity Vec Length

Message::Encrypted:

1 CString Pointer

Message::Unencrypted:

13 / 32

A Type Safety Violation Breaks Memory Safety

 pub enum Message {
 Encrypted(bool, Vec<u8>),
 Unencrypted(CString),
 }

 enum bool {
 false = 0,
 true = 1,
 }

bool (0 or 1) Vec Pointer Vec Capacity Vec Length

Message::Encrypted:

2 CString Pointer

Message::Unencrypted:

13 / 32

A Type Safety Violation Breaks Memory Safety

 pub enum Message {
 Encrypted(bool, Vec<u8>),
 Unencrypted(CString),
 }

 enum bool {
 false = 0,
 true = 1,
 }

bool (0 or 1) Vec Pointer Vec Capacity Vec Length

Message::Encrypted:

2 CString Pointer

Message::Unencrypted:

Write invalid
bool (e.g., 2)

13 / 32

A Type Safety Violation Breaks Memory Safety

 pub enum Message {
 Encrypted(bool, Vec<u8>),
 Unencrypted(CString),
 }

 enum bool {
 false = 0,
 true = 1,
 }

bool (0 or 1) Vec Pointer Vec Capacity Vec Length

Message::Encrypted:

2 CString Pointer

Message::Unencrypted:

Write invalid
bool (e.g., 2)

Read back
incorrect

variant

13 / 32

A Type Safety Violation Breaks Memory Safety

Host Application

✅ Memory Safe

Cryptography
Library

✅ Memory Safe

Combined Program

fn aes_encrypt()

-> bool

14 / 32

A Type Safety Violation Breaks Memory Safety

Host Application

✅ Memory Safe

Cryptography
Library

✅ Memory Safe

Combined Program

fn aes_encrypt()

-> bool
😈

14 / 32

A Type Safety Violation Breaks Memory Safety

15 / 32

Memory safety alone is not a useful
property when reasoning about the

composition of program components.

Memory safety alone is not a useful
property when reasoning about the

composition of program components.

→ We must also consider
type safety and other invariants.

Additional Invariants for a Foreign Function Call

 extern "C" {
 fn aes_encrypt(buf: *mut u8, len: usize) -> bool;
 }

17 / 32

Additional Invariants for a Foreign Function Call

 extern "C" {
 fn aes_encrypt(buf: *mut u8, len: usize) -> bool;
 }

✅ Memory Safe

17 / 32

Additional Invariants for a Foreign Function Call

 extern "C" {
 fn aes_encrypt(buf: *mut u8, len: usize) -> bool;
 }

✅ Memory Safe

Valid Values

17 / 32

Additional Invariants for a Foreign Function Call

 extern "C" {
 fn aes_encrypt(buf: *mut u8, len: usize) -> bool;
 }

✅ Memory Safe

Valid ValuesAliasing ⊕ Mutability

17 / 32

1. What makes interactions with
foreign languages safe?

2. Safely integrate arbitrary, untrusted
foreign libraries with Omniglot

Safe Interactions with Foreign Languages through Omniglot

Host Application Cryptography
Library

Combined Program

19 / 32

Safe Interactions with Foreign Languages through Omniglot

Host Application Cryptography
Library

Single Address Space

Private
Object

😈

19 / 32

Safe Interactions with Foreign Languages through Omniglot

Host Application Cryptography
Library

Single Address Space

Memory Isolation

Private
Object

👿

19 / 32

Safe Interactions with Foreign Languages through Omniglot

Host Application Cryptography
Library

Single Address Space

O
m

ni
gl

ot

Memory Isolation

19 / 32

Safe Interactions with Foreign Languages through Omniglot

Host Application Cryptography
Library

Single Address Space

O
m

ni
gl

ot

Memory Isolation

Omniglot mediates interactions between Rust and foreign code:
→ Validating values → Preventing mutable aliasing

19 / 32

Safe Interactions with Foreign Languages through Omniglot

Native, Unsafe FFI

unsafe { aes_encrypt(); }

Foreign Library

bool aes_encrypt() {
 return (bool) 2;
}

extern "C"
 fn aes_encrypt()
 -> bool

Direct FFI call:

20 / 32

Safe Interactions with Foreign Languages through Omniglot

Native, Unsafe FFI

unsafe { aes_encrypt(); }

Foreign Library

bool aes_encrypt() {
 return (bool) 2;
}

extern "C"
 fn aes_encrypt()
 -> bool

Direct FFI call:

extern "C"
 fn aes_encrypt'()
 -> c_char

Sandboxed FFI call
through weaker
function binding

20 / 32

Safe Interactions with Foreign Languages through Omniglot

Native, Unsafe FFI

unsafe { aes_encrypt(); }

Foreign Library

bool aes_encrypt() {
 return (bool) 2;
}

extern "C"
 fn aes_encrypt()
 -> bool

Direct FFI call:

extern "C"
 fn aes_encrypt'()
 -> c_char

Sandboxed FFI call
through weaker
function binding

Omniglot Wrapper

 let res: c_char = aes_encrypt'();

20 / 32

Safe Interactions with Foreign Languages through Omniglot

Native, Unsafe FFI

unsafe { aes_encrypt(); }

Foreign Library

bool aes_encrypt() {
 return (bool) 2;
}

extern "C"
 fn aes_encrypt()
 -> bool

Direct FFI call:

extern "C"
 fn aes_encrypt'()
 -> c_char

Sandboxed FFI call
through weaker
function binding

Omniglot Wrapper
fn aes_encrypt_wrapped() -> Result<bool> {
 let res: c_char = aes_encrypt'();
 if res >= 0 && res < 2 {
 // `res` is a valid bool enum variant
 return Ok(bool::from(res));
 } else {
 return Err(OmniglotError::ValidationFail);
 }
}

20 / 32

Safe Interactions with Foreign Languages through Omniglot

Native, Unsafe FFI

unsafe { aes_encrypt(); }

Foreign Library

bool aes_encrypt() {
 return (bool) 2;
}

extern "C"
 fn aes_encrypt()
 -> bool

Direct FFI call:

extern "C"
 fn aes_encrypt'()
 -> c_char

Sandboxed FFI call
through weaker
function binding

Omniglot Wrapper
fn aes_encrypt_wrapped() -> Result<bool> {
 let res: c_char = aes_encrypt'();
 if res >= 0 && res < 2 {
 // `res` is a valid bool enum variant
 return Ok(bool::from(res));
 } else {
 return Err(OmniglotError::ValidationFail);
 }
}

Omniglot Bindings

aes_encrypt_wrapped();

20 / 32

Safe Interactions with Foreign Languages through Omniglot

Host Application Cryptography
Library

Single Address Space

O
m

ni
gl

ot

Memory Isolation

Omniglot mediates interactions between Rust and foreign code:
✅ Validating values → Preventing mutable aliasing

21 / 32

Referencing Foreign Memory is Challenging

Aliasing ⊕ Mutability: there can never be two references pointing
to overlapping memory, if at least one of them is mutable.

22 / 32

Referencing Foreign Memory is Challenging

Aliasing ⊕ Mutability: there can never be two references pointing
to overlapping memory, if at least one of them is mutable.

libstack.so

#0

#1

#2

#3

#4void push(int* elem)

int* peek()

int* pop()

22 / 32

Referencing Foreign Memory is Challenging

Aliasing ⊕ Mutability: there can never be two references pointing
to overlapping memory, if at least one of them is mutable.

libstack.so

#0

#1

#2

#3

#4void push(int* elem)

int* peek()

int* pop()

let ptr_a = peek(); // *mut #4
let ref_a = unsafe { &*ptr_a };
println!("{}", ref_a);

22 / 32

Referencing Foreign Memory is Challenging

Aliasing ⊕ Mutability: there can never be two references pointing
to overlapping memory, if at least one of them is mutable.

libstack.so

#0

#1

#2

#3

#4void push(int* elem)

int* peek()

int* pop()

let ptr_a = peek(); // *mut #4
let ref_a = unsafe { &*ptr_a };
println!("{}", ref_a);

let ptr_b = peek(); // *mut #4
let ref_b = unsafe { &mut *ptr_b };
*ref_b = 42;

22 / 32

Referencing Foreign Memory is Challenging

Aliasing ⊕ Mutability: there can never be two references pointing
to overlapping memory, if at least one of them is mutable.

libstack.so

#0

#1

#2

#3

#4void push(int* elem)

int* peek()

int* pop()

let ptr_a = peek(); // *mut #4
let ref_a = unsafe { &*ptr_a };
println!("{}", ref_a);

let ptr_b = peek(); // *mut #4
let ref_b = unsafe { &mut *ptr_b };
*ref_b = 42;

println!("{}", ref_a); ⚠

22 / 32

Omniglot Rejects Unsound Mutable Aliasing

*mut T

*mut T: Arbitrary Pointer into Foreign Memory

23 / 32

Omniglot Rejects Unsound Mutable Aliasing

*mut T

*mut T: Arbitrary Pointer into Foreign Memory

OGMutRef<T>

upgrade()

OGMutRef<T>: Well-aligned, Mutably Accessible Object

23 / 32

Omniglot Rejects Unsound Mutable Aliasing

*mut T

*mut T: Arbitrary Pointer into Foreign Memory

OGMutRef<T>

upgrade()

OGMutRef<T>: Well-aligned, Mutably Accessible Object

write()

23 / 32

Omniglot Rejects Unsound Mutable Aliasing

*mut T

*mut T: Arbitrary Pointer into Foreign Memory

OGMutRef<T>

upgrade()

OGMutRef<T>: Well-aligned, Mutably Accessible Object

write()

OGVal<T>

validate()

&T

OGVal<T>: Object Conforming to Rust’s Requirements on Valid Values

23 / 32

Omniglot Rejects Unsound Mutable Aliasing

*mut T OGMutRef<T>

upgrade()
write()

OGVal<T>

validate()

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate()

23 / 32

Omniglot Rejects Unsound Mutable Aliasing

*mut T OGMutRef<T>

upgrade()
write()

OGVal<T>

validate()

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate() invoke()

⚠

23 / 32

Omniglot Rejects Unsound Mutable Aliasing

*mut T OGMutRef<T>

upgrade()
write()

OGVal<T>

validate()

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate() invoke()

free()

⚠⚠

23 / 32

Omniglot Rejects Unsound Mutable Aliasing

*mut T OGMutRef<T>

upgrade()
write()

OGVal<T>

validate()

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate() invoke()

free()

⚠⚠

Marker Types:
■ Allocation Scope
▲ Access Scope

□ △ Shared Ref.
■ ▲ Unique Ref.

23 / 32

Omniglot Rejects Unsound Mutable Aliasing

*mut T OGMutRef<T>

upgrade()
write()

OGVal<
 'access, T>

validate(△)

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate() invoke()

free()

⚠⚠

Marker Types:
■ Allocation Scope
▲ Access Scope

□ △ Shared Ref.
■ ▲ Unique Ref.

23 / 32

Omniglot Rejects Unsound Mutable Aliasing

*mut T
OGMutRef<
 'alloc , T>

upgrade()
write(▲)

OGVal<
 'alloc,
 'access, T>

validate(△)

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate() invoke(▲)

free()

⚠

Marker Types:
■ Allocation Scope
▲ Access Scope

□ △ Shared Ref.
■ ▲ Unique Ref.

23 / 32

Omniglot Rejects Unsound Mutable Aliasing

*mut T
OGMutRef<
 'alloc , T>

upgrade(□)
write(▲)

OGVal<
 'alloc,
 'access, T>

validate(△)

&T

OGMutRef<T>

OGVal<T>

upgrade()

validate() invoke(▲)

free(■)

Marker Types:
■ Allocation Scope
▲ Access Scope

□ △ Shared Ref.
■ ▲ Unique Ref.

23 / 32

Omniglot Rejects Unsound Mutable Aliasing

libstack.so

#0

#1

#2

#3

#4void push(...)

int* peek()

int* pop()

let (alloc, access) = scopes!();

let ptr_a = peek(); // *mut #4
let ref_a = ptr_a.upgrade(&alloc);
let val_a = ptr_a.validate(&access);
println!("{}", val_a);

24 / 32

Omniglot Rejects Unsound Mutable Aliasing

libstack.so

#0

#1

#2

#3

#4void push(...)

int* peek()

int* pop()

let (alloc, access) = scopes!();

let ptr_a = peek(); // *mut #4
let ref_a = ptr_a.upgrade(&alloc);
let val_a = ptr_a.validate(&access);
println!("{}", val_a);

let ptr_b = peek(); // *mut #4
let ref_b = ptr_b.upgrade(&alloc);
ref_b.write(42, &mut access);

24 / 32

Omniglot Rejects Unsound Mutable Aliasing

libstack.so

#0

#1

#2

#3

#4void push(...)

int* peek()

int* pop()

let (alloc, access) = scopes!();

let ptr_a = peek(); // *mut #4
let ref_a = ptr_a.upgrade(&alloc);
let val_a = ptr_a.validate(&access);
println!("{}", val_a);

let ptr_b = peek(); // *mut #4
let ref_b = ptr_b.upgrade(&alloc);
ref_b.write(42, &mut access);

println!("{}", ref_a); // compile error!

24 / 32

Omniglot Enables Safe Interactions Between Rust and Foreign Code

Host Application Cryptography
Library

Single Address Space

O
m

ni
gl

ot

Memory Isolation

Omniglot mediates interactions between Rust and foreign code:
✅ Validating values ✅ Preventing mutable aliasing

25 / 32

Omniglot Enables Safe Interactions Between Rust and Foreign Code

Host Application Cryptography
Library

Single Address Space

O
m

ni
gl

ot

Memory Isolation

Omniglot mediates interactions between Rust and foreign code:
✅ Validating values ✅ Preventing mutable aliasing

25 / 32

Omniglot is General

Omniglot
Types, Traits & Bindings

Host Lib

26 / 32

Omniglot is General

Omniglot
Types, Traits & Bindings

Host Lib

omniglot-tock
(RISC-V PMP)

26 / 32

Omniglot is General

Omniglot
Types, Traits & Bindings

Host Lib

omniglot-tock
(RISC-V PMP)

omniglot-mpk
(x86 Protection Keys)

26 / 32

Omniglot is General

Omniglot
Types, Traits & Bindings

Host Lib

omniglot-tock
(RISC-V PMP)

omniglot-mpk
(x86 Protection Keys)

omniglot-lfi
(Software Fault Isol.)

26 / 32

Omniglot is Fast

Unsafe
IPC (Sandcrust)

0.0 0.5 1.0 1.5 2.0
Decoded Image Size (MB)

0
10
20
30
40
50

D
ec

od
e

Ti
m

e
(m

s)

27 / 32

Omniglot is Fast

Unsafe
IPC (Sandcrust)
Omniglot (MPK)

0.0 0.5 1.0 1.5 2.0
Decoded Image Size (MB)

0
10
20
30
40
50

D
ec

od
e

Ti
m

e
(m

s)

27 / 32

Key Takeaways

1. We Need Safe Foreign Function Interfaces

Key Takeaways

1. We Need Safe Foreign Function Interfaces

2. Memory Safety is Merely Table Stakes

Key Takeaways

1. We Need Safe Foreign Function Interfaces

2. Memory Safety is Merely Table Stakes

3. We Need Systematic Approaches to
Maintain Rust’s Invariants Across the FFI

We Need Systematic Approaches to Maintain Soundness Across the FFI

Detecting Undefined
Behavior across the FFI with

testing and fuzzing

Ian McCormack, et. al, 2025

29 / 32

We Need Systematic Approaches to Maintain Soundness Across the FFI

Formally modeling a
foreign languages’ types in

another language

David Patterson, et. al, 2017

30 / 32

We Need Systematic Approaches to Maintain Soundness Across the FFI

Bridging high-level language
constructs for easier and
more expressive bindings

David Tolnay’s cxx crate,
wasm-bindgen, …

31 / 32

We Need Systematic Approaches to Maintain Soundness Across the FFI

Omniglot mechanically maintains
soundness, without assumptions

about the foreign library’s behavior

• Interposes on Rust’s native foreign function interface,
• Integrates with memory isolation primitives, and
• Mediates all interactions with foreign code.

✅ Memory Safety ✅ Type Safety ✅ Efficiency

32 / 32

We Need Systematic Approaches to Maintain Soundness Across the FFI

Omniglot mechanically maintains
soundness, without assumptions

about the foreign library’s behavior

• Interposes on Rust’s native foreign function interface,
• Integrates with memory isolation primitives, and
• Mediates all interactions with foreign code.

✅ Memory Safety ✅ Type Safety ✅ Efficiency

Each solution has unique
tradeoffs; there is no one

size fits all.

Let’s work together to
bring guaranteed safety to
Rust, even though foreign
libraries are here to stay.

32 / 32

We Need Systematic Approaches to Maintain Soundness Across the FFI

Omniglot mechanically maintains
soundness, without assumptions

about the foreign library’s behavior

• Interposes on Rust’s native foreign function interface,
• Integrates with memory isolation primitives, and
• Mediates all interactions with foreign code.

✅ Memory Safety ✅ Type Safety ✅ Efficiency

Paper: Source code:

https://github.com/omniglot-rs/omniglot

Artifact reproduction instructions:
 10.5281/zenodo.15602886

32 / 32

https://github.com/omniglot-rs/omniglot
https://doi.org/10.5281/zenodo.15602886

	Safety Bugs Plague Software for Decades
	$ whoami
	Safe Programming Languages Eliminate Memory Safety Vulnerabilities
	We Cannot Rewrite all Code in Safe Programming Languages
	Outline
	Memory Safety is Merely Table Stakes
	A Type Safety Violation Breaks Memory Safety
	Memory Safety is a Structural Property
	Additional Invariants for a Foreign Function Call
	Safe Interactions with Foreign Languages through Omniglot
	Referencing Foreign Memory is Challenging
	Omniglot Rejects Unsound Mutable Aliasing
	Omniglot Enables Safe Interactions Between Rust and Foreign Code
	Omniglot is General
	Omniglot is Fast
	Key Takeaways
	We Need Systematic Approaches to Maintain Soundness Across the FFI

