Memory Safety is Merely Table Stakes

Safe Interactions with Foreign
Languages through Omniglot

Leon Schuermann, Jack Toubes, Tyler Potyondy,
Pat Pannuto, Mae Milano, Amit Levy

“% PRINCETON '
oniversity UCSanDiego

1/32

Safety Bugs Plague Software for Decades

The Heartbleed Bug

The Heartbleed Bug is a serious vulnerability in the popular OpenSSsL
cryptographic software library. This weakness allows stealing the
information protected, under normal conditions, by the SSL/TLS
encryption used to secure the Internet. SSL/TLS provides communication
security and privacy over the Internet for applications such as web, email,
instant messaging (IM) and some virtual private networks (VPNs).

The Heartbleed bug allows anyone on the Internet to read the memory of
the systems protected by the vulnerable versions of the OpenSSL
software. This compromises the secret keys used to identify the service
providers and to encrypt the traffic, the names and passwords of the
users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to
impersonate services and users.

2/ 32

Safety Bugs Plague Software for Decades

The Heartbleed Bug

@ The Chromium Projects

Home
Chromium
ChromiumQs

Quick links Memory safety

Report bugs
Discuss

Chromium > Chromium Security >

The Chromium project finds that around 70% of our serious security
bugs are memory safety problems. Our next major project is to
prevent such bugs at source.

Other sites

Chromium Blog
Google Chrome

Extensions

Except as otherwise noted, the The prObIem

content of this page is licensed

under a Creative Commons . . .

Attribution 2.5 license, and Around 70% of our high severity security bugs are memory unsafety
examples are licensed under problems (that is, mistakes with C/C++ pointers). Half of those are

the BSD License.
use-after-free bugs.

2/ 32

Safety Bugs Plague Software for Decades

The Heartbleed Bug

g The Chromium Projects

L SIGNIN/UP TheMegister® Q —

Boeing 787 software bug can shut down planes’
generators IN FLIGHT of our serious security

Have you turned it off and on again? That's the way to stop the plane najor projectis to
becoming a brick

A Simon Sharwood Fri 1 May 2015 06:30 UTC

5 are memory unsafety

The US Federal Aviation Administration (FAA) has issued a new airworthiness directive (PDF) for - Half of those are

Boeing's 787 because a software bug shuts down the plane's electricity generators every 248
days.

“We have been advised by Boeing of an issue identified during laboratory testing,” the directive
says. That issue sees “The software counter internal to the generator control units (GCUSs) will

2/ 32

Hi, I'm Leon!

« Ph.D. Candidate at Princeton

3/32

Hi, I'm Leon!

« Ph.D. Candidate at Princeton

3/32

Hi, I'm Leon!

« Ph.D. Candidate at Princeton
o Core Maintainer of Tock OS

 Care About Software Being
Safe and Secure

3/32

Safe Programming Languages Eliminate Memory Safety Vulnerabilities

£ SIGNIN/UP

Microsoft is busy rewriting core Windows code
In memory-safe Rust

Now that's a C change we can back

A Thomas Clabumn Thu 27 Apr 2023 20:45 UTC

Microsoft is rewriting core Windows libraries in the Rust programming language, and the
more memory-safe code is already reaching developers.

David "dwizzle" Weston, director of OS security for Windows, announced the arrival of
Rust in the operating system's kernel at BlueHat IL 2023 in Tel Aviv, Israel, last month.

"You will actually have Windows booting with Rust in the kernel in probably the next
several weeks or months, which is really cool," he said. "The basic goal here was to
convert some of these internal C++ data types into their Rust equivalents."

4/ 32

Safe Programming Languages Eliminate Memory Safety Vulnerabilities

Rust English

Documentation related to Rust within the kernel. To start using Rust in
the kernel, please read the Quick Start guide.

.
The Rust experiment

The Llnux The Rust support was merged in v6.1 into mainline in order to help in determining
whether Rust as a language was suitable for the kernel, i.e. worth the tradeoffs.

Kernel

Currently, the Rust support is primarily intended for kernel developers and main-
6.9.0-rc5 tainers interested in the Rust support, so that they can start working on abstrac-
tions and drivers, as well as helping the development of infrastructure and tools.

Contents

If you are an end user, please note that there are currently no in-tree drivers/mod-
Development process ules suitable or intended for production use, and that the Rust support is still in
Submitting patches development/experimental, especially for certain kernel configurations.

Code of conduct
Maintainer handbook
All development-process

This documentation does not include rustdoc generated information.

» Quick Start

e » General Information
Core API » Coding Guidelines
Driver APIs « Arch Support
Subsystems * Testing
Locking

The kernel development community. | Powered by Sphinx 5.0.1 & Alabaster 0.7.12 | Page source

Licensing rules

5/32

Safe Programming Languages Eliminate Memory Safety Vulnerabilities

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Memory Safe Languages in Android 13

Search blog ..
December 1, 2022 Q -

@ Labels -
Posted by Jeffrey Vander Stoep

BB Archive -
For more than a decade, memory safety vulnerabilities have consistently
represented more than 65% of vulnerabilities across products, and across Feed

the industry. On Android, we're now seeing something different - a

significant drop in memory safety vulnerabilities and an associated drop in
¥ Follow @google

the severity of our vulnerabilities.

6/ 32

Safe Programming Languages Eliminate Memory Safety Vulnerabilities

Posted by Jeffrey Vander Stoep

For more than a decade, memory safety vulnerabilities have consistently represented
more than 65% of vulnerabilities across products, and across the industry. On Android,
we're now seeing something different - a significant drop in memory safety

vulnerabilities and an associated drop in the severity of our vulnerabilities.

Looking at vulnerabilities reported in the Android security bulletin, which includes

critical/high severity vulnerabilities reported through our vulnerability rewards program

7/ 32

We Cannot Rewrite all Code in Safe Programming Languages

= O

)

Existing systems span millions of
lines of code

8 /32

We Cannot Rewrite all Code in Safe Programming Languages

I & fOibsodium — Ehifs

v v

Existing systems span millions of Even new systems must integrate

lines of code existing, proven, optimized, and

tested libraries

8 /32

We Cannot Rewrite all Code in Safe Programming Languages

I & fOibsodium — Ehifs

v v

Existing systems span millions of Even new systems must integrate

lines of code existing, proven, optimized, and

tested libraries

Rewriting is impractical: cost, time, domain
expertise, certification requirements, ...

8 /32

We Cannot Rewrite all Code in Safe Programming Languages

- & Jibsodium s

e

v v

Existing systems span millions of Even new systems must integrate

lines of code existing, proven, optimized, and

tested libraries

— Safe languages like Rust must be able to safely
interact with code written in foreign languages

8 /32

1 What makes interactions with
* foreign languages safe?

What makes interactions with
foreign languages safe?

Safely integrate arbitrary, untrusted
foreign libraries with Omniglot

What makes interactions with

foreign languages safe?

Safely integrate arbitrary, untrusted
foreign libraries with Omniglot

Memory Safety is Merely Table Stakes

& SIGNIN/UP

Microsoft is busy rewriting core Windows code

in memorv-eafe Rueat

English
Now that's a Rust !

Documentation related to Rust within the kernel. To start using Rust in

the kernel, please read the Quick Start guide.
A Thomas Claburn

rma ™

. . - The Linux
MICI’OSth IS rewr|

more memory-s¢ Kernel

6.9.0.c5 Google Security Blog

David "dwizzle" \ - _
Contents The latest news and insights from Google on security and safety on the Internet

Rust in the oper:
Development process

Key Property: Memory Safety

10/ 32

Memory Safety is Merely Table Stakes

& SIGNIN/UP

Microsoft is busy rewriting core Windows code

in memorv-eafe Rueat

English
Now that's a Rust !

Documentation related to Rust within the kernel. To start using Rust in

the kernel, please read the Quick Start guide.
A Thomas Claburn

rma ™

. . - The Linux
MICI’OSth IS rewr|

more memory-s¢ Kernel

6.9.0.c5 Google Security Blog

David "dwizzle" \ - _
Contents The latest news and insights from Google on security and safety on the Internet

Rust in the oper:
Development process

What does Memory Safety mean?

10/ 32

Memory Safety is Merely Table Stakes

“Memory safety [describes] whether software or a programming
language is designed to prevent memory bugs and vulnerabilities.”

—Internet Society

11/ 32

Memory Safety is Merely Table Stakes

“Memory safety [describes] whether software or a programming
language is designed to prevent memory bugs and vulnerabilities.”

—Internet Society

Relates to the absence of bugs like:

Buffer Overflows

11/ 32

Memory Safety is Merely Table Stakes

“Memory safety [describes] whether software or a programming
language is designed to prevent memory bugs and vulnerabilities.”

—Internet Society

Relates to the absence of bugs like:

Buffer Overflows Use-After-Free

11/ 32

Memory Safety is Merely Table Stakes

“Memory safety [describes] whether software or a programming
language is designed to prevent memory bugs and vulnerabilities.”

—Internet Society

Relates to the absence of bugs like:

Buffer Overflows Use-After-Free

Data Races

11/ 32

Memory Safety is Merely Table Stakes

“Memory safety [describes] whether software or a programming
language is designed to prevent memory bugs and vulnerabilities.”

—Internet Society

Relates to the absence of bugs like:

Buffer Overflows Use-After-Free

Data Races Uninitialized Accesses

11/ 32

Memory Safety is Merely Table Stakes

Host Application

R ,

Cryptography
Library

12/ 32

Memory Safety is Merely Table Stakes

Combined Program

Host Application

R ,

Cryptography
Library

12/ 32

Memory Safety is Merely Table Stakes

(_] Memory Safe)—

Combined Program

Crypt h
Host Application —I— Typtography

Library

12/ 32

Memory Safety is Merely Table Stakes

Combined Program

/—((4 Memory Safe)

Host Application

R ,

|

(_] Memory Safe)—

Cryptography
Library

12/ 32

Memory Safety is Merely Table Stakes

Combined Program

/—((4 Memory Safe)

Host Application

R ,

|

(_I Memory Safe)—

/—((4 Memory Safe)

Cryptography
Library

12/ 32

Memory Safety is Merely Table Stakes

Combined Program

/—((4 Memory Safe)

Host Application

R ,

|

(X Memory Safe)—

/—((4 Memory Safe)

Cryptography
Library

12/ 32

Memory Safety is Merely Table Stakes

Combined Program

Host Application

fn aes encrypt()

T

®

Cryptography
Library

12/ 32

Memory Safety is Merely Table Stakes

Combined Program

Host Application

fn aes encrypt()

T

®

-> bool

Cryptography
Library

12/ 32

Memory Safety is Merely Table Stakes

Combined Program

(_] Memory Safe)ﬁ

Buffer

<

Host Application

fn aes encrypt()

T

\

®

/—((4 Memory Safe)

Cryptography
—— Library

\/

-> bool

12/ 32

A Type Safety Violation Breaks Memory Safety

- (Memory Safe %

extern "C" {

fn aes encrypt(buf: *mut u8, len: usize) -> bool;

pub enum Message {
Encrypted(bool, Vec<u8>),
Unencrypted(CString),

13/ 32

A Type Safety Violation Breaks Memory Safety

- (Memory Safe %

extern "C" {

fn aes encrypt(buf: *mut u8, len: usize) -> bool;

L e)

pub enum Message {
Encrypted(bool, Vec<u8>),
Unencrypted(CString),

13/ 32

A Type Safety Violation Breaks Memory Safety

pub enum Message {
Encrypted(bool, Vec<u8>),
Unencrypted(CString),

enum bool {
false = 0,
true = 1,

13/ 32

A Type Safety Violation Breaks Memory Safety

4 N\ ()
pub enum Message { enum bool {
Encrypted(bool, Vec<u8>), false = 0,
Unencrypted(CString), true = 1,
} }
_ J - J

Message: :Encrypted:

0 bool (0 or 1) Vec Pointer Vec Capacity Vec Length

Message: :Unencrypted:

1 CString Pointer

13/ 32

A Type Safety Violation Breaks Memory Safety

4 N\ ()
pub enum Message { enum bool {
Encrypted(bool, Vec<u8>), false = 0,
Unencrypted(CString), true = 1,
} }
_ J - J

Message: :Encrypted:

0 bool (0 or 1) Vec Pointer Vec Capacity Vec Length
W
Message: :Unencrypted:
1 CString Pointer
N

13/ 32

A Type Safety Violation Breaks Memory Safety

4 N\ ()
pub enum Message { enum bool {
Encrypted(bool, Vec<u8>), false = 0,
Unencrypted(CString), true = 1,
} }
_ J - J

Message: :Encrypted:

0 bool (0 or 1) Vec Pointer Vec Capacity Vec Length

W

Message: :Unencrypted:

1 CString Pointer

13/ 32

A Type Safety Violation Breaks Memory Safety

4 N\ ()
pub enum Message { enum bool {
Encrypted(bool, Vec<u8>), false = 0,
Unencrypted(CString), true = 1,
} }
_ J - J

Message: :Encrypted:

0 bool (0 or 1) Vec Pointer Vec Capacity Vec Length

s

W

Message: :Unencrypted:

1 CString Pointer

13/ 32

A Type Safety Violation Breaks Memory Safety

4 N\ ()
pub enum Message { enum bool {
Encrypted(bool, Vec<u8>), false = 0,
Unencrypted(CString), true = 1,
} }
_ J - J

Message: :Encrypted:

0 bool (0 or 1) Vec Pointer Vec Capacity Vec Length

Message: :Unencrypted:

1 CString Pointer

W

13/ 32

A Type Safety Violation Breaks Memory Safety

4 N\ ()
pub enum Message { enum bool {
Encrypted(bool, Vec<u8>), false = 0,
Unencrypted(CString), true = 1,
} }
_ J - J

Message: :Encrypted:

bool (0 or 1) Vec Pointer Vec Capacity Vec Length

Message: :Unencrypted:

2 CString Pointer

13/ 32

A Type Safety Violation Breaks Memory Safety

4 N\ ()
pub enum Message { enum bool {
Encrypted(bool, Vec<u8>), false = 0,
Unencrypted(CString), true = 1,
} }
_ J - J

Message: :Encrypted:

Write invalid))
sl (o 2 bool (0 or 1) Vec Pointer Vec Capacity Vec Length

Message: :Unencrypted:

2 CString Pointer

13/ 32

A Type Safety Violation Breaks Memory Safety

4 N\ ()
pub enum Message { enum bool {
Encrypted(bool, Vec<u8>), false = 0,
Unencrypted(CString), true = 1,
} }
_ J - J

Message: :Encrypted:

Write invalid))
bool (e.g., 2) bool (0 or 1) Vec Pointer Vec Capacity Vec Length
Message: :Unencrypted:
Read back
incorrect 2 CString Pointer
variant

13/ 32

A Type Safety Violation Breaks Memory Safety

Combined Program

fn aes encrypt()

(_] Memor Yy Safe)ﬁ /\/—(_] Memory Safe)

Cryptography

Host Application Library

® -

-> bool

14/ 32

A Type Safety Violation Breaks Memory Safety

Combined Program

["4 Memory Safe)ﬁ

Host Application

R ,

fn aes encrypt()

-> bool '

/—("4 Memory Safe)

Cryptography
Library

14/ 32

A Type Safety Violation Breaks Memory Safety

<« A} https://doc.rust-lang.org/reference/behavior-considered-undefined.html =

Invalid values

The Rust compiler assumes that all values produced during program
execution are “valid”, and producing an invalid value is hence immediate UB.

Whether a value is valid depends on the type:
A bool value must be false (0) or true (1).
A fn pointer value must be non-null.

A char value must not be a surrogate (i.e., must not be in the range
0xD800. .=0xDFFF) and must be equal to or less than char: :MAX.

15/ 32

Memory safety alone is not a useful
property when reasoning about the
composition of program components.

Memory safety alone is not a useful
property when reasoning about the
composition of program components.

— We must also consider
type safety and other invariants.

Additional Invariants for a Foreign Function Call

extern "C" {

fn aes encrypt(buf: *mut u8, len: usize) -> bool;

17 / 32

Additional Invariants for a Foreign Function Call

- (Memory Safe %

extern "C" {

fn aes encrypt(buf: *mut u8, len: usize) -> bool;

17 / 32

Additional Invariants for a Foreign Function Call

-

(Memory Safe %

extern "C" {

fn aes encrypt(buf: *mut u8, len: usize) -> bool;

~ i
N/

Valid Values

17 / 32

Additional Invariants for a Foreign Function Call

- (Memory Safe %

extern "C" {

fn aes encrypt(buf: *mut u8, len: usize) -> bool;

AN i
N

Aliasing @ Mutability Valid Values

17 / 32

What makes interactions with
foreign languages safe?

Safely integrate arbitrary, untrusted
foreign libraries with Omniglot

Safe Interactions with Foreign Languages through Omniglot

Combined Program

Host Application

Cryptography
Library

®

19/ 32

Safe Interactions with Foreign Languages through Omniglot

Single Address Space

Host Application

—

Private —
Object

Cryptography
Library

19/ 32

Safe Interactions with Foreign Languages through Omniglot

Single Address Space
Memory Isolation
s N /\\r N
Crypt h
Host Application rYII,)iI;)rge;ap y
Private 4' e Y
Obj
@ — /\//\

19/ 32

Safe Interactions with Foreign Languages through Omniglot

Single Address Space

Host Application

®

Omniglot

Memory Isolation

\f

Cryptography
Library

19/ 32

Safe Interactions with Foreign Languages through Omniglot

Single Address Space
Memory Isolation
-
- 2 P o \r a
=
. o r— Cryptography
Host Application g Library
® - &

Omniglot mediates interactions between Rust and foreign code:
— Validating values — Preventing mutable aliasing

19/ 32

Safe Interactions with Foreign Languages through Omniglot

4 N\ 4 N\
Native, Unsafe FFI Direct FFI call: Foreign Library
unsafe { aes encrypt(); } ——— €xtern C" —» bool aes encrypt() {

fn aes_encrypt() return (bool) 2;:
-> bool }
\\§ V4

. V4

20/ 32

Safe Interactions with Foreign Languages through Omniglot

4 N\ 4 N\
Native, Unsafe FFI Direct FFI call: Foreign Library
unsafe { aes encrypt(); } ——— €xtern C" —» bool aes encrypt() {

fn aes_encrypt() return (bool) 2:
-> bool }
_ A J

N Y :

extern "C"

fn aes encrypt'()
-> C_char
Sandboxed FFI call

through weaker
function binding

20/ 32

Safe Interactions with Foreign Languages through Omniglot

4 N\ 4 N\
Native, Unsafe FFI Direct FFI call: Foreign Library
unsafe { aes encrypt(); } ——— extern “C" —» bool aes encrypt() {

fn aes_encrypt() return (bool) 2;
-> bool }
\ A y,

N y :

4 2\
Omniglot Wrapper

extern "C"
let res: c _char = aes_encrypt'(); ------------------- [LY
-> C_char

Sandboxed FFI call
through weaker
function binding

20/ 32

Safe Interactions with Foreign Languages through Omniglot

~N

p
Native, Unsafe FFI

unsafe { aes encrypt(); } —|T—

J

Direct FFI call:
extern "C"

fn aes encrypt()
-> bool

g
Foreign Library
{

—» bool aes encrypt()
return (bool) 2;

~N

—

} else {

z
Omniglot Wrapper

fn aes encrypt wrapped() -> Result<bool> {
let res: c char = aes encrypt'();

if res >= 0 && res < 2 {
// "res’

return Ok(bool::from(res));

is a valid bool enum variant

return Err(OmniglotError::ValidationFail);

e%tern “Cct
fn aes encrypt'()
-> C_char
Sandboxed FFI call

through weaker
function binding

20/ 32

Safe Interactions with Foreign Languages through Omniglot

g
Native, Unsafe FFI

unsafe { aes encrypt(); } —|T—

~N

Direct FFI call:

extern "C"

Omniglot Bindings

\-

aes_encrypt wrapped();

fn aes encrypt()
-> bool

J

~N

z
Omniglot Wrapper

let res: c char = aes encrypt'();
if res >= 0 && res < 2 {
// is a valid bool enum variant
return Ok(bool::from(res));
} else {

‘res’

P fn aes encrypt wrapped() -> Result<bool> {

return Err(OmniglotError::ValidationFail);

p
Foreign Library
—» bool aes encrypt() {
return (bool) 2;
}
N A
. :
-
extern "C"

fn aes encrypt'()
-> C_char
Sandboxed FFI call

through weaker
function binding

20/ 32

Safe Interactions with Foreign Languages through Omniglot

Single Address Space
Memory Isolation
-
4 \/ O \f N
=
L o = Cryptography
Host Application g Library
® -~ &

Omniglot mediates interactions between Rust and foreign code:

(4 Validating values — Preventing mutable aliasing

21/ 32

Referencing Foreign Memory is Challenging

Aliasing @ Mutability: there can never be two references pointing
to overlapping memory, if at least one of them is mutable.

22 /32

Referencing Foreign Memory is Challenging

Aliasing @ Mutability: there can never be two references pointing
to overlapping memory, if at least one of them is mutable.

libstack.so

void push(int* elem) #4
#3
int* peek()
#2
int* pop() i
#0

22 /32

Referencing Foreign Memory is Challenging

Aliasing @ Mutability: there can never be two references pointing
to overlapping memory, if at least one of them is mutable.

let ptr_a = peek(); // *mut #4 libstack.so

let ref a = unsafe { &*ptr_a }; _ ,
void push(int* elem) #4

println! ("{}", ref a); /
#3
\kint* peek()

#2

int* pop() l

#0

22 /32

Referencing Foreign Memory is Challenging

Aliasing @ Mutability: there can never be two references pointing

to overlapping memory, if at least one of them is mutable.

let ptr_a = peek(); // *mut #4
let ref a = unsafe { &*ptr_a };
println! ("{}", ref_a);

let ptr b = peek(); // *mut #4
let ref b = unsafe { &mut *ptr b };
*ref b = 42;

void push(i

int* peek()

int* pop()

libstack.so

nt* elem) #4

P

#2

#1

#0

22 /32

Referencing Foreign Memory is Challenging

Aliasing @ Mutability: there can never be two references pointing

to overlapping memory, if at least one of them is mutable.

let ptr_a = peek(); // *mut #4
let ref a = unsafe { &*ptr_a };

println! ("{}",

let ptr b = peek(); // *mut #4
let ref b = unsafe { &mut *ptr b };

*ref b = 42;

println! ("{}",

ref a);

ref a);

void push(i

int* peek()

int* pop()

libstack.so

nt* elem) #4

P

#2

#1

#0

22 /32

Omniglot Rejects Unsound Mutable Aliasing

*mut T

*mut T: Arbitrary Pointer into Foreign Memory

23 /32

Omniglot Rejects Unsound Mutable Aliasing

upgrade()

Y

*mut T OGMutRef<T>

*mut T: Arbitrary Pointer into Foreign Memory

0GMutRef<T>: Well-aligned, Mutably Accessible Object

23 /32

Omniglot Rejects Unsound Mutable Aliasing

write()
upgrade() i

Y

*mut T OGMutRef<T>

*mut T: Arbitrary Pointer into Foreign Memory

0GMutRef<T>: Well-aligned, Mutably Accessible Object

23 /32

Omniglot Rejects Unsound Mutable Aliasing

write()
upgrade() i validate()

Y

Y

*mut T OGMutRef<T> OGVal<T> > &T

*mut T: Arbitrary Pointer into Foreign Memory
OGMutRef<T>: Well-aligned, Mutably Accessible Object

0GVal<T>: Object Conforming to Rust’s Requirements on Valid Values

23 /32

Omniglot Rejects Unsound Mutable Aliasing

write()

validate()

upgrade()
v

*mut T

OGMutRef<T>

AN

Y

upgrade()

OGVal<T>

> &T

—

OGMutRef<T>

1

N
validate()
A\

—

OGVal<T>

1

23 /32

Omniglot Rejects Unsound Mutable Aliasing

write()
upgrade() i validate()
v L |
*mut T OGMutRef<T> OGVal<T> &T
AN
upgrade()
%—— OGMutRef<T> ——{
N
validate() invoke ()

V.
V /S S S Sl
V.

OGVal<T> 000000000

—

1

23 /32

Omniglot Rejects Unsound Mutable Aliasing

write()

upgrade() i validate()

Y | Y |
*mut T OGMutRef<T> OGVal<T> &T
AN
upgrade() free()
V.
- OGMutRef<T>)
N
validate()

invoke()

V.
V /S S S Sl
V.

OGVal<T> 000000000

—

1

23 /32

Omniglot Rejects Unsound Mutable Aliasing

Marker Types:

Allocation Scope write() A Shared Ref.
A Access Scope upgrade() i validate() A Unique Ref.

Y s Y !
*mut T OGMutRef<T> OGVal<T> &T
N
upgrade() free()
4
- OGHutRef<T>) —
N
validate() invoke()

V.
V /S S S Sl
V.

OGVal<T> 000000000

—

1

23 /32

Omniglot Rejects Unsound Mutable Aliasing

Marker Types:

Allocation Scope write() A Shared Ref.
A Access Scope upgrade() i validate(A) A Unique Ref.

Y s Y !
OGVal<
mut T OGMutRef<T> . &T
access, T>
N
upgrade() free()
4
- OGHutRef<T>) —
N
validate() invoke()

V.
V /S S S Sl
V.

OGVal<T> 000000000

—

1

23 /32

Omniglot Rejects Unsound Mutable Aliasing

Marker Types:

Allocation Scope /) A Shared Ref.
A Access Scope upgrade() i validate(A) A Unique Ref.

! | !

Val
0GMutRef< JaEls
, 1>

*mut T , > ST

'access, T>

AN

upgrade() free()

/
V//// /S S S S S S S S
0GMutRef<T> 000
AN

validate() .
\ 1nvok_e(A)

OGVal<T>

—

1

—

1

23 /32

Omniglot Rejects Unsound Mutable Aliasing

Marker Types:
Allocation Scope ISR AN A Shared Ref.
A Access Scope upgrade (1) i validate(A) A Unique Ref.
Y Y
0GMutRef< O6Val<
*mut T , > ST
, T>
‘access, T>
AN
upgrade() free(H)
}7 OGMutRef<T> —|
N
validate() :
.\ invoke (A)
}— 0GVal<T> | —!

23 /32

Omniglot Rejects Unsound Mutable Aliasing

let (alloc, access) = scopes!();

libstack.so
let ptr_a = peek(); // *mut #4
let ref a = ptr_a.upgrade(&alloc); void push(...) #4
let val a = ptr_a.validate(&access); ////1 -
. | 1] n .
println! ("{}", val a); Ekint* veek()
#2
int* pop() i
#0

24 /32

Omniglot Rejects Unsound Mutable Aliasing

let (alloc, access) = scopes!();

libstack.so
let ptr_a = peek(); // *mut #4

let ref a = ptr_a.upgrade(&alloc); void push(...) #4

let val_a = ptr_a.validate(&access); ////1 43
0 | 11l 1 . x .
printin! ("{}", val_a); | »int* peek()

let ptr_ b = peek(); // *mut #4

' int* pop() i

let ref b = ptr b.upgrade(&alloc); 0
#

ref b.write(42, &mut access);

24 /32

Omniglot Rejects Unsound Mutable Aliasing

let (alloc, access) = scopes!();

libstack.so
let ptr_a = peek(); // *mut #4

let ref a = ptr_a.upgrade(&alloc); void push(...) #4

let val_a = ptr_a.validate(&access); ////1 43
0 | 11l 1 . x .
printin! ("{}", val_a); | »int* peek()

let ptr_ b = peek(); // *mut #4

' int* pop() i

let ref b = ptr b.upgrade(&alloc); 0
#

ref b.write(42, &mut access);

printin! ("{}", ref a); // compile error!

24 /32

Omniglot Enables Safe Interactions Between Rust and Foreign Code

Single Address Space
Memory Isolation
-
4 \/ O \f N
=
L o = Cryptography
Host Application g Library
® -~ &

Omniglot mediates interactions between Rust and foreign code:

(4 Validating values (4 Preventing mutable aliasing

25/ 32

Omniglot Enables Safe Interactions Between Rust and Foreign Code

Single Address Spac

Host Ap

Omnigle
Valid......

ARTIFACT ARTIFACT
EVALUATED EVALUATED
[[# e

Building Bridges: Safe Interactions with Foreign Languages through Omniglot

Leon Schuermann’, Jack Toubes’, Tyler Potyondy*, Pat Pannuto*, Mae Milano, Amit Levy®

T Princeton University, $Universiry of California, San Diego

Abstract

Memory- and type-safe languages promise to eliminate
entire classes of systems vulnerabilities by construction. In
practice, though, even clean-slate systems often need to incor-
porate libraries written in other languages with fewer safety
guarantees. Because these interactions threaten the soundness
of safe languages, they can reintroduce the exact vulnerabili-
ties that safe languages prevent in the first place.

This paper presents Omniglot: the first framework to effi-
ciently uphold safety and soundness of Rust in the presence
of unmodified and untrusted foreign libraries. Omniglot fa-
cilitates interactions with foreign code by integrating with a
memory isolation primitive and validation infrastructure, and
avoids expensive operations such as copying or serialization.

We implement Omniglot for two systems: we use it to inte-
grate kernel components in a highly-constrained embedded
operating system kernel, as well as to interface with conven-
tional Linux userspace libraries. Omniglot performs com-
parably to approaches that deliver weaker guarantees and
significantly better than those with similar safety guarantees.

1 Introduction

Systems built using type-safe and memory-safe program-
ming languages are safer, more reliable, and more secure
b AR C S Q& A SAT

engineers. Pragmatic development does not immediately dis-
card such thoroughly tested code but incrementally replaces
it with safe languages when new features or complex fixes
would otherwise be required.

Unfortunately, integrating foreign libraries into type-safe
programs can re-introduce the exact vulnerabilities safe lan-
guages eliminate. When foreign code is invoked, it runs in the
same address space and with the same privileges as the host
language. A bug in a foreign library, such as the infamous
OpenSSL Heartbleed vulnerability [39], can arbitrarily vio-
late the safety of the host language by, for example, accessing
memory that the host language assumed was private.

Recent contributions propose isolating foreign code in sep-
arale protection domains [4, 16, 29, 35]. Unfortunately, mem-
ory isolation alone is insufficient to maintain safety. Differ-
ences in semantics across languages mean that even inter-
actions with internally correct foreign libraries—ones that
operate only on sandboxed memory—may violate safety in
subtle ways. For example, two languages may differ in their
restrictions on pointer aliasing and corresponding types may
have subtly different memory layouts or permissible values.
Manually enforcing these invariants and translating types
between different languages is error prone and endangers se-
curity and reliability [25]. Instead, we need a safe Foreign
Function Interface (FFI) that maintains memory safety as well

sraphy
ary

gn code:

u A ANV Y \/LLULLLb LALu»uu.l.\:: allaSIHg

25/ 32

Omniglot is General

_ Omniglot
@ Types, Traits & Bindings

o Lib]

~———

26 / 32

Omniglot is General

_ Omniglot
® Types, Traits & Bindings

/

omniglot-tock
(RISC-V PMP)

| O N

o Lib]

~———

26 / 32

Omniglot is General

S Omniglot I]
@ Types, Traits & Bindings

omniglot-tock E omniglot-mpk

(RISC-V PMP) | (x86 Protection Keys)

To:ck 75

26 / 32

Omniglot is General

S Omniglot I]
@ Types, Traits & Bindings

omniglot-tock E omniglot-mpk omniglot-1f1

(RISC-V PMP) | (x86 Protection Keys) (Software Fault Isol.)

To:ck 75

26 / 32

Omniglot is Fast

. —@— Unsafe
- —&— [PC (Sandcrust)

=~ Ot
oS O

Decode Time (ms)
N
S S

p—
S

-

0.0 0.5 1.0 1.5 2.0
Decoded Image Size (MB)

27 / 32

Omniglot is Fast

. + I Uﬁséfé
’ 50 | —a—IPC (Sandcrust)
= 40 Omniglot (MPK)
E 30! o0
= : ,\'/‘.v/"'
< 20 ¢ -
O i
g 10 s
oree ™
0.0 0.5 1.0 1.5 2.0

Decoded Image Size (MB)

27 / 32

Key Takeaways

1 _ We Need Sate Foreign Function Interfaces

Key Takeaways

1 _ We Need Sate Foreign Function Interfaces

2 _ Memory Safety is Merely Table Stakes

Key Takeaways

We Need Safe Foreign Function Interfaces

Memory Safety is Merely Table Stakes

We Need Systematic Approaches to
Maintain Rust’s Invariants Across the FFI

We Need Systematic Approaches to Maintain Soundness Across the FFI

A Study of Undefined Behavior Across Foreign
Function Boundaries in Rust Libraries

Ian McCormack
Carnegie Mellon University
Pittsburgh, PA, USA
icmccorm@cs.cmu.edu

Detecting Undefined
Behavior across the FFI with

Abstract—Developers rely on the static safety guarantees of
the Rust programming language to write secure and performant
applications. However, Rust is frequently used to interoperate
with other languages which allow design patterns that conflict
with Rust’s evolving aliasing models. Miri is currently the only
dynamic analysis tool that can validate applications against these
models, but it does not support finding bugs in foreign functions,
indicating that there may be a critical correctness gap across the
Rust ecosystem. We conducted a large-scale evaluation of Rust
libraries that call foreign functions to determine whether Miri’s
dynamic analyses remain useful in this context. We used Miri
and an LLVM interpreter to jointly execute applications that
call foreign functions, where we found 46 instances of undefined
or undesired behavior in 37 libraries. Three bugs were found
in libraries that had more than 10,000 daily downloads on
average during our observation period, and one was found in
a library maintained by the Rust Project. Many of these bugs
were violations of Rust’s aliasing models, but the latest Tree
Borrows model was significantly more permissive than the earlier
Stacked Borrows model. The Rust community must invest in
new, production-ready tooling for multi-language applications to
ensure that developers can detect these errors.

Index Terms—Rust, interoperation, undefined behavior, alias-
ing, bugs, foreign functions

testing and fuzzing

[an McCormack, et. al, 2025

I. INTRODUCTION

The Rust programming language has become increasingly
popular due to its static safety guarantees, which provide
security benefits comparable to garbage collection without
additional run-time overhead [1], [2]. However, Rust is also
frequently used in interoperation with languages that do not

Xiv:2404.11671v8 [cs.SE] 2 Apr 2025

Joshua Sunshine
Carnegie Mellon University
Pittsburgh, PA, USA
sunshine@cs.cmu.edu

Jonathan Aldrich
Carnegie Mellon University
Pittsburgh, PA, USA
Jjonathan.aldrich@cs.cmu.edu

« RQ1: What types of errors occur in Rust libraries that
call foreign functions?
The Rust community has proposed two aliasing models:
Stacked Borrows [9] and Tree Borrows [10]. The goal of
these models is to "strike a balance" [9] between performance
and usability by providing a set of rules that developers must
follow to ensure that compile-time optimizations are applied
correctly [11]. Since Stacked Borrows and Tree Borrows both
provide rules of this kind, we ask a second research question:
o RQ2: Which of Rust’s aliasing models permits more real-
world programs with foreign function calls?

To answer these questions, we created MiriLLI: a tool which
combines Miri with an LLVM interpreter to jointly exe-
cute programs and detect undefined behavior across foreign
function boundaries. We used MiriLLI to conduct a large-
scale study of 9,130 test cases from 957 Rust libraries that
call foreign functions. We identified 46 unique instances of
undefined or undesirable behavior from 37 libraries. Of the
90 test cases that violated Stacked Borrows, 66% (59) did not
violate Tree Borrows.

Our results indicate that Rust’s restrictions on aliasing,
mutability, and initialization make it easy to inadvertently
introduce undefined behavior when calling foreign functions.
Developers can take immediate steps to avoid these errors by
auditing their use of certain types at foreign callsites. However,
the Rust Project must invest in new, production-ready tooling
to ensure that these errors can be easily detected.

29 /32

We Need Systematic Approaches to Maintain Soundness Across the FFI

Formally modeling a
foreign languages’ types in
another language

David Patterson, et. al, 2017

Linking Types for Multi-Language Software:

Have Your Cake and Eat It Too

Daniel Patterson! and Amal Ahmed?

1 Northeastern University, Boston MA, USA
dbp@ccs.neu. edu

2 Northeastern University, Boston MA, USA
amal@ccs.neu.edu

—— Abstract

Software developers compose systems from components written in many different languages. A
business-logic component may be written in Java or OCaml, a resource-intensive component in
C or Rust, and a high-assurance component in Coq. In this multi-language world, program
sontext to another. This boundary-

execution sends values from one linguisti rossing exposes

values to contexts with unforeseen behavior—that is, behavior that could not arise in the source

language of the value. For example, a Rust function may end up being applied in an ML context

that violates the memory usage policy enforced by Rust’s type system. This leads to the question

of how developers ought to reason about code in such a multi-language world where behavior

inexpressible in one language is easily realized in another.

This paper proposes the novel idea of linking types to address the problem of reasoning
about single-language components in a multi-lingual setting. Specifically, linking types allow
programmers to annotate where in a program they can link with components inexpressible in
their unadulterated language. This enables developers to reason about (behavioral) equality
using only their own language and the annotations, even though their code may be linked with
code written in a language with more expressive power

NOTE: This paper will be much casier to follow if viewed /printed in color.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Linking, program reasoning, equivalence, expressive power of languages,

fully abstract compilation

Digital Object Identifier 10.4230/LIPIes.SNAPL.2017.12

1 Reasoning in a Multi-Language World

‘When building large-scale software systems, programmers should be able to use the best
language for each part of the system. Using the “best language” means the language that

30/ 32

Bridging high-level language

constructs for easier and
more expressive bindings

David Tolnay’s cxx crate,
wasm-bindgen, ...

1. Rust @ C++
2. Core concepts
3. Tutorial
4. Other Rust-C++ interop tools
5. Multi-language bulld system options
5.1. Cargo
5.2. Bazel or Buck2
5.3. CMake
5.4. More...
6. Reference: the bridge module
6.1. extern "Rust"
6.2, extern "C++"
6.3. Shared types
6.4. Attributes
6.5. Async functions

6.6. Error handling

~

. Reference: built-in bindings

7.1. 5tring — rust:String

7.2. &str — rust::Str

7.3. &[T], &mut [T] — rust:Slice<T>

7.4. Cxxstring — std:string

7.5. BOX<T> — rust:zBox<T>

7.6. UniquePtr<T> — std:unique_ptr<T> |
7.7. SharedPtr<T> — std::shared_ptr<T>
7.8. Vec<T> — rust:Vec<T>
7.9. CxxVector<T> — std:vector<T>
7.10. *mut T, *const T raw pointers
7.11. Function pointers

7.12. Result<T>

We Need Systematic Approaches to Maintain Soundness Across the FFI

mn
o
)

CXX — safe interop between Rust and C++

This library provides a safe mechanism for calling C++ code from Rust and Rust code from C++, It
carves out a regime of commonality where Rust and C++ are semantically very similar and guides
the programmer to express their language boundary effectively within this regime. CXX fills in the
low level stuff so that you get a safe binding, preventing the pitfalls of doing a foreign function
interface over unsafe C-style signatures.

#[cxx::bridge] mod
description of boundary

Macro expansion

Code generation

Safe
straightforward l Straightforward
Rust APIs Hidden C ABI C++ APlIs
Rus Rust bindings [— = = = = »| C++ bindings |€— C++
code code

From a high level description of the language boundary, CXX uses static analysis of the types and
function signatures to protect both Rust's and C++'s invariants. Then it uses a pair of code
generators to implement the boundary efficiently on both sides together with any necessary static
assertions for later in the build process to verify correctness.

The resulting FFI bridge operates at zero or negligible overhead, i.e. no copying, no serialization, no
memory allocation, no runtime checks needed.

The FFl signatures are able to use native data structures from whichever side they please. In
addition, CXX provides builtin bindings for key standard library types like strings, vectors, Box,
unigue_ptr, etc to expose an idiomatic AP| on those types to the other language.

Example

In this example we are writing a Rust application that calls a C++ client of a large-file blobstore
service. The blobstore supports a put operation for a discontiguous buffer upload. For example we
might be uploading snapshots of a circular buffer which would tend to consist of 2 pieces, or
fragments of a file spread across memory for some other reason (like a rope data structure).

#[cxx: :bridgel
mod ffi {

extern "Rust" [

31/ 32

We Need Systematic Approaches to Maintain Soundness Across the FFI

Omniglot mechanically maintains
soundness, without assumptions
about the foreign library’s behavior

- Interposes on Rust’s native foreign function interface,
o Integrates with memory isolation primitives, and
« Mediates all interactions with foreign code.

V1 Memory Safety [V4 Type Safety [Efficiency

ARTIFACT aRTiEACT |
EVALUATED

(7

Building Bridges: Safe Interactions with Foreign Languages through Omniglot

Leon Schuermann’, Jack Toubes, Tyler Potyondy?, Pat Pannuto:
University of California, San Diego

#Princeton University,

Abstract

Menmory- and type-safe languages promise to eliminate
entire classes of systems vulnerabilities by construction. In
practice, though, even clean-slate systems often need to incor-
porate libraries written in other languages with fewer safety
guarantees. Because these interactions threaten the soundness
of safe languages, they can reintroduce the exact vulnerabili-
ties that safe languages prevent in the first place.

This paper presents Omniglot: the first framework to effi-
ciently uphold safety and soundness of Rust in the presence
of unmodified and untrusted foreign libraries. Omniglot fa-
cilitates interactions with foreign code by integrating with a
memory isolation primitive and validation infrastructure, and
avoids expensive operations such as copying or serialization.

We implement Omniglot for two systems: we use it to inte-
grate kernel components in a highly-constrained embedded
operating system kernel, as well as to interface with conven-
tional Linux userspace libraries. Omniglot performs com-
parably to approaches that deliver weaker guarantees and
significantly better than those with similar safety guarantees.

1 Introduction

Systems built using type-safe and memory-safe program-
ming languages are safer, more reliable, and more secure

Mae Milano', Amit Levy"

engineers. Pragmatic development does not immediately dis-
card such thoroughly tested code but incrementally replaces
it with safe languages when new features or complex fixes
would otherwise be required.

Unfortunately, integrating foreign libraries into type-safe
programs can re-introduce the exact vulnerabilities safe lan-
‘guages eliminate. When foreign code is invoked. it runs in the
same address space and with the same privileges as the host
language. A bug in a foreign library, such as the infamous
OpenSSL Heartbleed vulnerability [39], can arbitrarily vio-
late the safety of the host language by, for example, acces
‘memory that the host language assumed was private.

Recent contributions propose isolating foreign code in sep-
arate protection domains [4, 16, 29, 35]. Unfortunately, mem-
ory isolation alone is insufficient to maintain safety. Differ-
ences in semantics across languages mean that even inter-
actions with interally correct foreign libraries—ones that
operate only on sandboxed memory—may violate safety in
subtle ways. For example, two languages may differ in their
ctions on pointer aliasing and corresponding types may
have subtly different memory layouts or permissible values.
Manually enforcing these invariants and translating types
between different languages is error prone and endangers se-
curity and reliability [25]. Instead, we need a safe Foreign
Function Interface (FFI) that maintains memory safety as well

32/ 32

We Need Systematic Approaches to Maintain Soundness Across the FFI

Omniglot mechanically maintains Each solution has unique
soundness, without assumptions tradeoffs; there is no one
about the foreign library’s behavior size fits all.

- Interposes on Rust’s native foreign function interface,

Let’s work together to

o Integrates with memory isolation primitives, and

bring guaranteed safety to

« Mediates all interactions with foreign code.

Rust, even though foreign
Memory Safety Type Safety Efficiency libraries are here to stay.

32/ 32

We Need Systematic Approaches to Maintain Soundness Across the FFI

Omniglot mechanically maintains
soundness, without assumptions
about the foreign library’s behavior

- Interposes on Rust’s native foreign function interface,
o Integrates with memory isolation primitives, and
« Mediates all interactions with foreign code.

(4 Memory Safety [J§ Type Safety [/ Efficiency

https://github.com/omniglot-rs/omniglot

Artifact reproduction instructions:
@ 10.5281/zenodo.15602886

32/ 32

https://github.com/omniglot-rs/omniglot
https://doi.org/10.5281/zenodo.15602886

	Safety Bugs Plague Software for Decades
	$ whoami
	Safe Programming Languages Eliminate Memory Safety Vulnerabilities
	We Cannot Rewrite all Code in Safe Programming Languages
	Outline
	Memory Safety is Merely Table Stakes
	A Type Safety Violation Breaks Memory Safety
	Memory Safety is a Structural Property
	Additional Invariants for a Foreign Function Call
	Safe Interactions with Foreign Languages through Omniglot
	Referencing Foreign Memory is Challenging
	Omniglot Rejects Unsound Mutable Aliasing
	Omniglot Enables Safe Interactions Between Rust and Foreign Code
	Omniglot is General
	Omniglot is Fast
	Key Takeaways
	We Need Systematic Approaches to Maintain Soundness Across the FFI

