Encapsulated Functions: C W PRINCETON
P : UNIVERSITY
Fortiftying Rust’s FFI in Embedded Systems

Leon Schuermann Arun Thomas Amit Levy RISC
Princeton University zeroRISC Inc. Princeton University LETO
Overview Safe Type-Abstractions

Encapsulated Functions is a framework for safely invoking Isolating foreign / untrusted code is not sufficient—differing cross-
untrusted code in a memory-safe system with minimal overhead. language semantics can break safety guarantees in subtle ways:
Encapsulated Functions combines Mutable Aliasing Null Pointers Valid Values
mmp hardware-based memory protection mechanisms present in is disallowed in Rust must not be coverted different across

modern microcontrollers with to references languages (e.g. bool)
== a set of safe type-abstractions Introduce a set of type abstractions that:
to facilitate safe interactions with untrusted and unmodified third- == Eliminate hazardous cross-language invariant violations.
party libraries. =) Use the typestate-paradigm to represent validation states of

- - references, tied into memory allocation & lightweight
Motivation context switch mechanisms through Rust lifetimes.

Rust is suitable to replace C or C++ for safety- and security- - { 1 1locSco e] it { hecossSco e} —
critical embedded systems. It provides memory safety without e \p m‘i . / L8N Amu
compromising runtime compute & memory overhead. alloc() g write() & ! invoke ()
Y v
Still, it is often infeasible to rewrite such critical software in Rust: upgrade () l validate ()
mm) FExtensive certification requirements mean that rewrites
. . . EFMutVal<
incur vast development efforts and costly re-certification. EFMutRef<
EFPtr< 'al1oc 'alloc,
== Rust is missing required infrastructure, e.g. certified T T ’ 'access,
compilers / standard libraries. > S T
We can expect a gradual transition to memory-safe software: >
___) S w
' Single Address Space Function l as_ptr() as_ref ()
| : Invocations Cryptography ‘ i
: o / Library |
%E get_field() ->
| Memory-Safe ETS’ EFMutRef<' , U> &T
: Application | g & | .
| g 2 N (for structs) (for primitives)
i @ A \ Networking | . .
| Library é | msp EFPtr: Raw pointer type, safe to pass across FFI boundaries
e | == EFMutRef: Reference type validated to be well-aligned &
Foreign code endangers the system’s safety: wholly contained in mutably accessible foreign memo

Bound to an allocation scope, forced out of scope on allocation changes.

map EFMutVal: Reference type validated to adhere to the
EFMutRef restrictions & contain a valid instance of type T

ms) A buggy library can arbitrarily modify the safe language’s
memory and thus violate its safety requirements.

== [nteractions between languages can cause unsoundness due Bound to an access scope, forced out of scope on writes / invocations.

Case Study

to differing cross-language semantics (e.g. valid values).

Lightweight Context Switches

== Use memory protection mechanisms of microcontrollers to the Tock embedded OS, written in Rust. We

isolate untrusted code (e.g. ARM Cortex-M MPU, RISC-V PMP). Uuse it to integrate the OpenTitan CryptoLib, _I_@ oC k
a C-based library providing hardened

implementations of cryptographic algorithms and hardware drivers.

We integrate Encapsulated Functions into A o
1" Oopentitan

Coarse-grained protection regions: RAM, Flash, MMIO periph.

Lightweight Context Switches optimize over executing regular

processes and maintain synchronous function call semantics. == Overhead of Lightweight Context Switches:
RISC-V PMP Lightweight Tock Process

Support multi-threaded execution

Pre-configured | Context Switch | Context Switch
RAM Flash v 120 instr. 530 instr. | 23%
:_Rust AllocationJl : Rust Stack] : Rust .text : :_Rust .rodata] X 360 instr. 770 instr. | 47%
@ e —————= | — - == [ntegrates into standard Tock kernel HMAC interfaces
I Rust , | ¢ I | | Encapsulated ! | : :
A Allocation | | ' | | Functions Flash ' App | == Direct access to hardware peripherals (MMIO HMAC core)
______ L _I I
| RO | 1AEEn == Works alognside regular Tock processes, shares RISC-V PMP
Encapsulated | tack ' L
Functions RAM :
, MMIO
.data | l __________
.b ' ! : : :
>s : , Flash Controller MAG == Extensive expressiveness and performance evaluation
I ____________ . .
| ' Power Management | == Port to other Oses, architectures, memory protection schemes
y Leoe B il , Iy p
—)
—)

== Accesses into foreign memory can still violate Rust’s soundness! Automatic generation of bindings for EF* types

	Page 1

