
Encapsulated Functions:
Fortifying Rust’s FFI in Embedded Systems

Leon Schuermann
Princeton University

Arun Thomas
zeroRISC Inc.

Amit Levy
Princeton University

Overview

Motivation

Encapsulated Functions is a framework for safely invoking
untrusted code in a memory-safe system with minimal overhead.
Encapsulated Functions combines

to facilitate safe interactions with untrusted and unmodified third-
party libraries.

hardware-based memory protection mechanisms present in
modern microcontrollers with

a set of safe type-abstractions

Lightweight Context Switches

Safe Type-Abstractions

Rust is suitable to replace C or C++ for safety- and security-
critical embedded systems. It provides memory safety without
compromising runtime compute & memory overhead.

Still, it is often infeasible to rewrite such critical software in Rust:

We can expect a gradual transition to memory-safe software:

Extensive certification requirements mean that rewrites
incur vast development efforts and costly re-certification.

Rust is missing required infrastructure, e.g. certified
compilers / standard libraries.

Foreign code endangers the system’s safety:
A buggy library can arbitrarily modify the safe language’s
memory and thus violate its safety requirements.

Interactions between languages can cause unsoundness due
to differing cross-language semantics (e.g. valid values).

Use memory protection mechanisms of microcontrollers to
isolate untrusted code (e.g. ARM Cortex-M MPU, RISC-V PMP).
Coarse-grained protection regions: RAM, Flash, MMIO periph.
Lightweight Context Switches optimize over executing regular
processes and maintain synchronous function call semantics.

Accesses into foreign memory can still violate Rust’s soundness!

Case Study

Future Work

Isolating foreign / untrusted code is not sufficient—differing cross-
language semantics can break safety guarantees in subtle ways:

Introduce a set of type abstractions that:

Mutable Aliasing
is disallowed in Rust

Null Pointers
must not be coverted

to references

Valid Values
different across

languages (e.g. bool)

Use the typestate-paradigm to represent validation states of
references, tied into memory allocation & lightweight
context switch mechanisms through Rust lifetimes.

Eliminate hazardous cross-language invariant violations.

EFPtr: Raw pointer type, safe to pass across FFI boundaries
EFMutRef: Reference type validated to be well-aligned &
wholly contained in mutably accessible foreign memory
Bound to an allocation scope, forced out of scope on allocation changes.
EFMutVal: Reference type validated to adhere to the
EFMutRef restrictions & contain a valid instance of type T
Bound to an access scope, forced out of scope on writes / invocations.

We integrate Encapsulated Functions into
the Tock embedded OS, written in Rust. We
use it to integrate the OpenTitan CryptoLib,
a C-based library providing hardened
implementations of cryptographic algorithms and hardware drivers.

Overhead of Lightweight Context Switches:

Integrates into standard Tock kernel HMAC interfaces
Direct access to hardware peripherals (MMIO HMAC core)
Works alognside regular Tock processes, shares RISC-V PMP

Extensive expressiveness and performance evaluation
Port to other Oses, architectures, memory protection schemes
Support multi-threaded execution
Automatic generation of bindings for EF* types

	Page 1

