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Abstract—Precise time synchronization is essential for many
real-time systems, for instance in the field of the Industrial
Internet of Things. To this end, the IEEE has defined the
Precision Time Protocol (IEEE 1588) to synchronize devices
in IEEE 802 networks, including Ethernet and its extensions
for real-time communication known by the term Time Sensitive
Networking (TSN).

This paper analyzes the feasibility of implementing IEEE 1588
Precision Time Protocol based time synchronization and syn-
tonization, using commodity microcontrollers without hardware-
based assistance for timestamping IEEE 1588 messages. A Device
Under Test, built on a LiteX and RISC-V based FPGA and
running the Tock embedded OS, is used to implement an IEEE
1588 slave clock. This clock synchronizes to a precise Grand-
master clock. A time-to-digital-converter measures the system’s
synchronization accuracy while subject to internal and external
simulated system conditions. The acquired data is analyzed
and used to derive conclusions about the impact of specific
system conditions and architectural choices on the achievable
synchronization accuracy.

I. INTRODUCTION

Time Sensitive Networking (TSN) has a growing number of
applications in both industry and consumer facing scenarios.
Precise time synchronization between networked devices is a
strict requirement in a wide variety of application areas, such
as the Industrial Internet of Things (IIoT), distributed audio
interfaces or Smart Grids.

TSN describes a set of open and vendor-independent IEEE
standards that enable real-time communication and precise
time synchronization across standard IEEE 802.3 (Ethernet)
networks. In particular, the time synchronization aspect of
TSN is implemented using the IEEE 1588 Precision Time
Protocol (PTP). Using preexisting network infrastructures and
vendor-independent standards, such as Ethernet, for time syn-
chronization between devices can have a significant economi-
cal advantage compared to competing proprietary solutions.
Furthermore, PTP is specified such that the participating
network stations do not necessarily require hardware support
for this protocol. On the one hand, stations with hardware
support for PTP may achieve a substantially higher degree of
time synchronization precision compared to an implementation
without explicit hardware support. On the other hand, if a

software-only implementation of PTP can deliver the required
time synchronization precision for the target application area,
time synchronization can be retrofitted in these systems with-
out hardware modifications.

Commonly, application areas of TSN utilize highly-
specialized embedded systems centered around microcon-
troller platforms to implement their application logic, as op-
posed to conventional personal computing devices. The avail-
ability of open TSN standards facilitates hardware-assisted
implementations of PTP in such hardware components. In
fact, a number of microcontroller platforms offer dedicated
hardware assistance for PTP. Still, many existing and deployed
hardware platforms do not feature explicit hardware support
for PTP. This raises the question: what degree of synchroniza-
tion precision of an implementation of PTP can be expected,
using only standard microcontroller systems without hardware
assistance?

In an effort to answer the aforementioned question, this
paper shall analyze the feasibility and performance of time
synchronization using PTP in embedded systems without
hardware support.

Contributions of this paper include an implementation of a
subset of the IEEE 1588 Precision Time Protocol for Tock, a
novel embedded operating system, as well as a port of Tock to
LiteX System on a Chips (SoCs) with a RISC-V processor and
an implementation of hardware timestamping infrastructure for
LiteEth, a Field Programmable Gate Array (FPGA) Ethernet
Media Access Control (MAC) core.

The rest of the paper is structured as follows: first, an
overview over the relevant mechanisms of PTP is provided in
Section II. Section III outlines this work’s problem statement.
In Section IV, an analysis of important system properties for
a measurement setup is conducted. Based on these results,
Section V describes a measurement architecture including
hardware and software specifications, as well as measurement
approaches. Further, statistical methods to analyze acquired
data are elaborated in Section VI. Section VII uses these
statistical methods to perform time synchronization measure-
ments and interpret the observed results. Finally, Section VIII
concludes this paper and discusses potential future work.



II. OVERVIEW OF THE PRECISION TIME PROTOCOL

The IEEE Standard 1588 defines the Precision Time Pro-
tocol (PTP), a protocol for accurate synchronization and
syntonization of real-time clocks between devices in net-
worked distributed systems. In particular, PTP can be used
to synchronize and syntonize clocks of devices connected
using commodity Ethernet connections and can support clocks
of different precision, resolution and stability guarantees [1,
p. 14].

Clock syntonization describes the process of adjusting the
frequency of two independent clocks such that they run at
the same rate, hence agree on the length of some fixed
time interval. Clock or time synchronization describes clocks
agreeing on the current time [2]. Hence, clock syntonization
is a measure of the relative agreement of two independently
running clocks, whereas clock synchronization is a measure of
the absolute agreement of said clocks. In the context of IEEE
1588 PTP, clock syntonization is not necessarily done using
physical syntonization, but through clock adjustment strategies
[1, p. 214]. As PTP does not enable continuous synchro-
nization of clocks and instead provides periodic momentary
synchronization events as illustrated in Figure 1, for one clock
to be a useful representation of another clock, at least for some
time after a synchronization event, the clocks must also be
syntonized. Therefore, in the context of this paper, PTP clock
synchronization also always implies PTP clock syntonization.
Clocks which are synchronized and syntonized are said to be
phase-locked, meaning that they increment time at the same
rate and at the same time [2].

PTP defines a topology and ordering of distributed clocks
(PTP instances) as part of a PTP domain. All clocks of a
PTP domain are synchronized to the single Grandmaster clock
of the domain [1, pp. 39–40]. Clock synchronization works
through devices containing PTP clocks exchanging (communi-
cating) PTP messages over PTP communication paths between
a set of PTP ports, and capturing the timestamps of the
reception or transmission of said messages [1, pp. 40, 74–76].

Clocks are generally divided into ordinary clocks, having a
single PTP port, and boundary clocks, having multiple PTP
ports [1, p. 41]. Ordinary PTP clocks can either be master
clocks, being the source of time for all other PTP clocks on
this PTP communication path, or slave clocks, synchronizing
to the master clock on the respective PTP communication path.
Boundary PTP clocks have multiple PTP communication paths
associated and can therefore simultaneously be a PTP slave
and master on different communication paths [1, pp. 47–48].
Such a PTP clock hierarchy is illustrated in Figure 2.

PTP works by communicating the current master time to a
slave, and correcting for the master–slave message propagation
delay at the slave. Therefore, two distinct types of mes-
sages are exchanged: sync messages and delay measurement
messages. Sync messages communicate the current master
timestamp to the slave. Since these messages experience the
master–slave message propagation delay of the PTP commu-
nication path, the slave must further add this delay to the
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Fig. 1. An exchange of PTP Sync and Delay Request/Response Messages
with associated timestamps.

received master timestamp in order to recover the current
master time. Therefore, the slave will issue delay request
messages, which are answered by the master through delay
response messages. An exchange of a sync-message and a pair
of delay-request-message and response-message yields four
timestamps, as described in Figure 1. From these timestamps
the master–slave delay can be recovered as

dmaster–slave =
(t4 − t1)− (t3 − t2)

2
,

and in turn the current master timestamp can be recovered as

t = t1 + (tslave − t2) + dmaster–slave,

where tslave is the current slave time to adjust for time passed
since the sync message exchange [1, pp. 57–58].

Figure 1, in addition to the sync and delay measurement
messages, further contains a follow up message. While a one-
step PTP clock can embed the timestamp t1 directly into the
sync message itself, a two-step PTP clock can only accurately
determine t1 after the sync message has been sent. In this case,
the follow up message is used to communicate the timestamp
t1 to the slave [1, p. 76].

PTP measures the master-slave message propagation delay
using the accumulated delay of both, the slave-master and
master-slave message paths (round trip delay), and subse-
quently assumes half of this delay is accurate to describe the
master-slave message path. Therefore, PTP makes the basic
assumption that the paths are entirely symmetric in terms
of their delay, or the asymmetry is known [1, p. 371]. In
practice this assumption may not hold, especially on non-
direct physical links between PTP clocks. Intervening net-
work elements feature buffers and other mechanisms which
can impact path symmetry and delay variability. IEEE 1588
recommends using transparent clocks for intervening network
elements, which correct for these additional delays in each
propagated message. Furthermore, PTP may be used in a peer-
to-peer delay measurement mode, as opposed to the end-to-
end approach presented in Figure 1. In the peer-to-peer mode,



the individual PTP link delays between two PTP ports are
measured, as opposed to the total master-slave delay [1, p. 59].
This can further improve the accuracy of the delay estimation
of the PTP communication path as a whole and reduce the
influence of delay asymmetry of a link.

III. PROBLEM STATEMENT

The IEEE 1588 PTP time synchronization standard, as in-
troduced in Section II, makes a range of assumptions about the
software and hardware implementations of participating nodes
in a PTP domain, in addition to the network structure [1, p. 39].
While some of these assumptions are critical to ensure reliable
operation of the PTP protocol, such as the requirement of
low PTP message loss, other assumptions are made purely to
guarantee a high precision time synchronization: for instance,
an offset in the acquisition of PTP message timestamps may
result in an absolute time offset between slave and master
clocks [1, p. 77].

In general, due to hardware and operating constraints,
implementing PTP as described by IEEE 1588 along with
all recommendations may not be feasible or practical. In
particular, devices without special hardware capabilities for
IEEE 1588 can be more attractive for the overall system com-
pared to devices having hardware timestamping capabilities,
or are already deployed in the field. Therefore, this thesis will
analyze the effects of violating different assumptions made
by PTP to match hardware and software constraints given by
commodity microcontrollers.

To estimate the magnitude of error in time synchronization
introduced by any such violated assumption, a controlled, open
and measurable system shall be used to implement a subset
of the PTP protocol. This system operates the PTP protocol
and algorithms together with other PTP nodes using well-
established and precise PTP-capable hardware and software. A
measurement of the absolute synchronization error in different
system conditions and configurations is subsequently used to
deduce the effect of these system properties on the accuracy
of PTP implementations in general. Furthermore, the ability to
take system-internal measurements allows to gain confidence
in the cause-effect relationship of different system properties
and the observed synchronization accuracy. The system im-
plementing the PTP subset and simulating different system
conditions is further referred to as the Device Under Test
(DUT).

IV. ANALYSIS

The following section describes the identification and eval-
uation of important system properties, in order to design a
suitable test and measurement system to acquire realistic and
precise measurement data in accordance with the problem
statement. In particular, decisions made in the design of this
system are explained to provide a justification of the Device
Under Test (DUT)’s assumed application area.
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Fig. 2. An example of a PTP domain, outlining the clock hierarchy along
different PTP nodes, respective PTP ports and communication paths.

A. Identification of a Suitable PTP Clock Type

In order to develop a realistic test scenario, a PTP mode
of operation mirroring common real-world applications must
be identified. Specifically, the type of PTP clock of the clock
hierarchy (compare Figure 2) implemented by the DUT, along
with other operating parameters, must be chosen such that
typical use-cases for PTP are best described and generalized
through the implementation of the DUT.

While generic microcontroller-based embedded systems
may well take the role of a Grandmaster clock in a PTP
domain, this is seldom expected to be the case. Most micro-
controllers do not feature particularly stable local oscillators
to serve as the basis for holding an accurate measure of
time. Even with periodic re-synchronization to an external
time source, such a system might experience significant clock
drift. While this is the case regardless of the type of PTP
clock implemented in such a system, the Grandmaster clock
is expected to be a reliable and accurate source of time,
and serves as an upper bound on the precision achievable
by other clocks synchronizing to this source, with respect
to an external time source. Not featuring hardware packet
timestamping capabilities will further decrease the achievable
synchronization precision [1, p. 489].

Compared to Grandmaster clocks, PTP boundary clocks
are a more viable target for microcontroller-based embedded
systems. Specifically for providing a time source to other
transport protocols, such as industry-standard bus systems, mi-
crocontrollers can participate in a PTP domain via IEEE 802.3
Ethernet, and further distribute the timing information either
through Ethernet, or other protocols using a Sink Adapter as
specified in IEEE 1588 [1, p. 102, section 7.6.7.2].

Nonetheless, PTP slave clocks appear to be the most rea-
sonable application area for generic microcontrollers within
PTP. While only a single Grandmaster clock is required
in a PTP domain, multiple slave clocks may synchronize
to this Grandmaster, emphasizing the economical impact of
using low-cost, low-power generic microcontrollers in these
applications. Further, any errors introduced in the time syn-



chronization of a PTP slave clock will not have a direct effect
on the synchronization capabilities of other devices in the PTP
domain. Finally, a PTP boundary clock encompasses a PTP
slave clock as a sink, and a PTP master clock as a source
of timing information. Therefore, results obtained as part of a
PTP slave clock implementation should have a direct relation
to the precision achievable with boundary clocks.

B. PTP Operating Parameters

In addition to the type of PTP clock implemented in the
DUT, operating parameters of the PTP protocol also play an
important role in the design of the test system and directly
relate to results observed.

A PTP slave clock receives PTP sync messages from an
elected master clock with a period Ts. Further, the slave
clock must periodically initiate delay measurements by send-
ing a delay-request message every Td. Choosing these pa-
rameters can have direct influence on the observed syn-
chronization accuracy. A higher synchronization period Ts
causes the slave clock to have fewer accurate master-clock
timestamps, and thus be decoupled from the master clock
(free-running) for longer periods of time. A higher Td can
cause the slave to miss short-lived variations of the PTP
communication path propagation delay. However, choosing
either Ts or Td too low will cause additional network and
system load on participating PTP instances and PTP com-
munication paths [1, pp. 103–104]. Both of these values are
specified as powers of two (logSyncInterval [1, p. 103];
logMinDelayReqInterval for a minimum interval be-
tween two subsequent delay-request messages respectively [1,
p. 104]). While default values vary across implementations1,
choosing reasonably high intervals can be useful to emphasize
negative effects of such clock drift and the efficiency of
compensation mechanisms.

Other parameters, such as the delay mechanism, the trans-
port protocol (Ethernet, UDP/IPv4 or UDP/IPv6) and multicast
or unicast operation are dependent on the test and measure-
ment architecture, as elaborated in the following section.

C. Test and Measurement Architecture

To eliminate error sources outside of the DUT, it is im-
portant to choose an appropriate test and measurement archi-
tecture. Error sources outside of the DUT are an important
concern for production systems, for example when operating
PTP communication paths using (partially) non-PTP-capable
active network equipment. However, the presence of external
errors makes isolating system-internal error sources signifi-
cantly more difficult. For this reason, the test architecture must
be conceptually simple, with a minimal number of active and
passive components on the time-critical PTP communication
path between the master clock and slave clock.

To further provide a stable source of time for the slave
clock to synchronize to, the master clock should operate in a
free-running manner (that is, not synchronized or syntonized

1For instance, ptp4l of the Linux PTP Project uses Ts = 20 = 1 s by
default [3], whereas Juniper devices use Ts = 2−6 ≈ 16 ms [4, p. 88].

to any external clock source). As such, the provided timing
information is obtained solely from the master clock’s in-
ternal oscillator. By avoiding synchronization with external
clock sources – such as Global Positioning System (GPS) –
the master clock’s frequency should experience a relatively
constant frequency drift caused by physical properties of
and environmental influences on the internal crystal oscillator
alone, as opposed to frequent changes in both the frequency
and frequency drift caused by adjusting to the external clock
source. A basic assumption of this system is that the master
clock uses a comparatively stable crystal oscillator with high
short-term stability, ideally orders of magnitude more precise
compared to the oscillator used by the DUT.

To precisely measure synchronization accuracy achieved by
the DUT under different conditions, a multitude of options
exist. For instance, on each complete PTP synchronization,
the DUT may compare the current time estimate before the
synchronization to the time corrected using the information of
the synchronization message exchange. A major advantage of
this approach is that no additional hardware or communication
channel is required, which makes it ideal for estimating the
accuracy of PTP systems in production. However, this in-
system measurement can be subject to errors in the offset cal-
culation. Furthermore, the synchronization performance might
be affected by the presence of the in-system measurement
itself. Lastly, an in-system measurement cannot verify correct
compensation of the PTP communication path delay, as the
device has no way to determine this parameter without coop-
eration of the elected PTP master clock through one of the
delay measurement methods specified.

Instead, a synchronization signal, issued by both, the master
and slave clocks at a fixed phase offset within a specific time
interval, can be compared by an external system. A common
example of such a signal is a per-second pulse, issued at the
start of every second. This is commonly referred to as a PPS or
1-PPS (Pulse per Second) output, and can be found on many
precision clock instruments. An external system can measure
the difference in arrival time of these two pulses (phase offset),
which directly correlates to the difference in time as kept by
the two independent systems at that instant. If this pulse is
generated in hardware without any software involvement, it
will be unaffected by any other system-internal noise.

However, measuring clock synchronization precision using
a Pulse per Second (PPS) signal issued by master and slave
clocks also has significant disadvantages. For instance, mea-
suring the difference between two PPS pulses only reveals
the cumulative error of a clock, with no detailed information
about the clock behavior within this period. The measured
error can contain components of clock synchronization error,
clock syntonization error, oscillator stability and oscillator
noise. Hence, the measured error will be a composition of
both internal errors and environmental influences such as
temperature variations and crystal oscillator aging [5]. These
error components can be both additive and subtractive. For
instance, Figure 3 outlines a potential measurement deficit
when using 1-PPS-style signals from two clocks: two fictional
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Fig. 3. Cumulative synchronization measurement error with 1PPS-style
measurements.

clocks are depicted, synchronized through a sync message,
and issuing a PPS signal each second. Both clocks show
inaccuracies, whereas the left clock is significantly less stable
than the right. The graph depicts the difference in time as
held by these clocks. For an outside observer of only the
two PPS signals, the left and right cases cannot be reliably
distinguished.

Furthermore, only acquiring one data point per second
requires long-running measurements to gain statistical confi-
dence with respect to observed effects.

Finally, synchronizing two clocks and measuring the accu-
racy through a PPS signal introduces the risk of measurement
bias: depending on the phase offset of the synchronization
messages within a given second, the clock will be free-
running and subject to its noise and drift characteristics for
longer or shorter periods of time, respectively. For example,
when synchronizing the absolute time at the end of a given
second (immediately prior to issuing a PPS pulse), the clock’s
syntonization and noise will have an insignificant effect on the
observed result, compared to when synchronizing at the start
of a given second. This is illustrated in Figure 4, showing
two identically behaving clocks with different sync message
offsets and corresponding measurement bias.

D. DUT Hardware

To be able to acquire measurement data as described in
the problem statement and elaborated in the previous sections,
an appropriate hardware platform for the DUT must be used.
In particular, the ability to take measurements (such as the
PPS output) without software involvement is required. Fur-
ther, to reproduce realistic conditions as found in commodity
microcontrollers, the DUT should be architecturally similar
to such systems. Finally, using PTP imposes a set of strict
requirements on the system, such as a compatible transport or
a locally running clock [1, pp. 45, 74].

Even though this paper primarily analyzes the effect of
using PTP without proper hardware timestamping support, the
DUT should feature PTP hardware timestamping capabilities
in order to establish a measurement baseline. This baseline
measurement will be used to test the software PTP imple-
mentation correctness, and is used as a best case scenario to
compare other measurements to.

In general, these basic requirements are fulfilled by many
modern commodity microcontrollers (based on processor ar-
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Fig. 4. Biased synchronization measurement through synchronization phase
offset.

chitectures such as ARM Cortex-M), featuring IEEE 802.3
Ethernet and IEEE 1588 timestamping capabilities. However,
microcontrollers in general cannot be introspected internally,
as to determine where delays and jitter in the processing of
internal events and signals occur. Furthermore, manufacturers
often supply only a high-level description and overview of the
microcontroller’s internal structure.

In contrast to that, a Field Programmable Gate Array
(FPGA) can be used to synthesize a complete SoC, with
an architecture similar to current microcontrollers. However,
by being entirely re-programmable to synthesize any logic
circuit within the physical limitations of the FPGA, such
a platform features significantly more flexibility and intro-
spectability compared to fixed-circuit microcontrollers. For
example, internal signals of the synthesized SoC can be
routed to external pins of the FPGA to take precise timing
measurements. Furthermore, custom hardware (cores) can be
created to offload measurement and computation tasks which
would otherwise need to be done in software on commodity
microcontrollers. Depending on how the required IEEE 802.3
transport is integrated with the FPGA, hardware timestamping
functionality can be implemented within the synthesized logic
in the FPGA itself.

E. PTP Clock Implementation

Conventional microcontroller platforms typically do not
feature a precision real time clock, but instead provide at least
a single system timer module. Examples for this are the system
timer (SysTick) found on ARM Cortex-M, or the machine
timer (mtime) of RISC-V systems adhering to the RISC-V
Instruction Set Privileged Architecture [6, p. 32].

These clock implementations either do not support adjusting
the current clock time as a hardware constraint, or the clock’s
current value cannot be adjusted without violating invariants
of other parts of the system, given that software components
rely on the fact that the timer value will be monotonically
increasing. Since this single counter must be shared by many
software consumers running on the same hardware through
timer virtualization techniques, this is almost always the case.

This is in contrast to typical hardware-assisted PTP imple-
mentations. Here, an adjustable timer is provided, implement-
ing a free-running counter which can be set to an arbitrary
value and frequency-adjusted to run synchronized to a master
clock to provide an accurate local time reference. Notably,



this local clock is further used to timestamp received and
transmitted PTP frames.

Microcontrollers may feature an adjustable timer module
which supports setting an absolute value, as well as adjusting
the timer frequency to synchronize to a distinct master clock.
However, for the reasons outlined above and to avoid enforcing
specific hardware requirements, this clock must be assumed
to be independent of any timestamp reference clock, either in
the MAC controller (hardware-assisted) or a standard system
clock (software-based).

Therefore, two scenarios must be considered:
1) The microcontroller does feature an adjustable clock

module which supports setting the current time, as well as
adjusting the operating frequency up to a certain degree.
It does not need to run monotonically increasing. This
hardware clock can be used as a local reference clock,
synchronized to the PTP master clock. It cannot be used
for timestamping PTP packets.

2) The microcontroller does not feature an adjustable clock
module. A local, non-adjustable system clock must be
used as a basis to provide a local reference clock synchro-
nized to the PTP master clock through clock virtualization
techniques. When timestamping transmitted and received
PTP frames in software, the gathered timestamps can be
assumed to be relative to the system clock frequency.

While the second approach (virtualizing a synchronized
real-time clock over a monotonic free-running system clock)
can be implemented in virtually any system, this implies
translating the system clock into the real-time clock using
software operations. Depending on the frequency-adjustment
mechanism and implementation strategy, this is not always
feasible with respect to the resource constraints, especially on
microcontrollers without hardware multiplication and division
support. Consequently, if an appropriate adjustable clock is
present, it should be used as a local reference clock.

In the context of this work, using an appropriate adjustable
clock hardware module is required. This is because the 1-PPS
signal, as required by the Test and Measurement Architecture
Analysis of Section IV-C, must be generated independent of
the DUT’s software stack to avoid system-internal influences
on the observed result. This can only be achieved by a second,
free-running counter which can be set, modified and adjusted
in frequency. When the current timer value mod 1 s reaches
0, a 1-PPS pulse must be generated accordingly, without any
software involvement.

F. DUT Software

The hardware platform as described in the previous section
must be paired with software compatible to the hardware plat-
form and capable of operating the PTP protocol. Furthermore,
the DUT must be able to simulate desired measurement work-
loads. There are virtually endless options for implementing
such a software stack. Conceptually, embedded systems are
hard to generalize: systems can span from having resources
just sufficient to implement simple control loops, to running
full general purpose Operating Systems (OSs) and workloads

[7, p. 95]. Hence, it is difficult to define one single software
platform and architecture as representative for the broad range
of embedded devices and their use cases.

Nonetheless, specific characteristics of the implemented
software stack can have effects on both, the implementation
complexity of PTP, as well as the software timestamp accu-
racies achievable. Therefore, it is important to identify these
relevant characteristics, to be able to estimate their effect on
the measured results.

A basic classification of embedded devices is presented
in [8]: embedded devices are classified into general purpose
OS-based devices, embedded OS-based devices, and devices
without an OS-abstraction. This classification can be used to
perform a preselection of the DUT software stack architecture.

Devices without an OS-abstraction typically use a single
control loop and receive interrupts triggered by peripherals.
These software systems can execute full control over the
underlying device, which can be used to meet different design
goals, for instance to react to incoming events quickly. How-
ever, such a highly flexible system architecture also implies
that is does not necessarily have clearly distinguishable char-
acteristics or follow established OS properties. A requirement
of this paper is to be generalizable to other embedded systems,
and as such this class of embedded system is a poor fit as a
representative DUT.

On the other end of the spectrum, there are general purpose
OS-based embedded systems. These generally run commodity
OSs and hardware, retrofitted to be suitable for the required
embedded use case. The high complexity, generic nature and
high hardware requirements of such systems make introspect-
ing the OS behavior difficult. Furthermore, the requirements
posed by many general purpose OSs are in contrast to the
motivation to use low-cost generic microcontrollers for imple-
menting PTP.

Embedded OS-based systems strike a balance between
the lower resource requirements of devices without an OS-
abstraction and those using general purpose operating systems.
They define abstraction layers, can schedule multiple distinct
tasks and use established operating system concepts, while
being able to run in low-resource environments. The ability
to use internal abstraction layers for implementing PTP on
a set of defined Application Programming Interfaces (APIs)
to lower layers, as well as the possibility to run synthetic
workloads either in parallel or sequentially to the PTP im-
plementation makes these systems viable for implementing as
part of the DUT.

Common properties of embedded OSs that can significantly
influence the real-time characteristics of the system are the
scheduling algorithm and its parameters, interrupt latency
in software and context switch overhead [9]. Thus also the
accuracy and stability of acquired software timestamps is
influenced as a result of these characteristics.

V. ARCHITECTURE

Following the analysis of Section IV, which identifies
important properties and characteristics of a measurement
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the PTP Grandmaster Ethernet NIC and the TDC measurement device.

architecture, this section will elaborate on the details of the
final DUT and measurement setup. An overview of the system
and measurement architecture is depicted in Figure 5.

A. PTP Architecture

The system architecture encompasses a single PTP domain.
As discussed, the Device Under Test implements a PTP slave
clock. Furthermore, there exists a Grandmaster clock for the
PTP slave to synchronize to. No other devices are placed on
the PTP communication path in between the Grandmaster and
slave clock devices. The devices are interconnected through
a short (< 5 m) 1000Base-T Ethernet link. This is to avoid
any external influences and unpredictable delays on the trans-
mission of PTP messages. The PTP communication itself, in
accordance with these constraints, is using a multicast-based
IPv4 User Datagram Protocol (UDP) transport. Other transport
mechanisms, such as unicast transmission, IEEE 802.1 packets
or IPv6 UDP packets are also compatible with this system
architecture and should not influence the observed results.

The Grandmaster PTP device is implemented using a com-
modity x86-64 Personal Computer (PC) running a Linux dis-
tribution with kernel version 5.4.108. It features a Solarflare
Communications SR203 SF10-050020 Ethernet network
adapter, which has built-in support for IEEE 1588 hardware
timestamping. Importantly, this network adapter features a
PPS output signal, issuing a pulse on precisely the start of
a second with respect to the network adapter’s internal clock.
The Linux PTP Project’s linuxptp2 PTP implementation
is used to implement the Grandmaster’s PTP software stack,
which in turn uses the hardware timestamping capabilities of
the Solarflare network adapter.

Notably, the linuxptp software is configured to have a
logSyncInterval of 0, resulting in one PTP sync message
per second. However, this causes issues of measurement bias
as described in Section IV-C and illustrated in Figure 4: by
always synchronizing at the same phase offset within one

2http://linuxptp.sourceforge.net/

second, depending on the start of the linuxptp software,
the DUT will be free-running for shorter or longer periods of
time respectively. While the phase-offset of the sync messages
experiences long-term drift of approximately 1 s within 8 h,
this still introduces systematic errors. To reduce the impact of
such measurement bias, the linuxptp software is patched
to always issue sync messages with a delay of 1010 ms,
causing the phase offset to wrap around every 5

3 min. This
will distribute the effects of a shorter and longer free-running
local clock of the DUT over the measurement interval.

B. DUT Hardware
The DUT, implementing the PTP slave clock and measure-

ment workloads, is built on an FPGA platform. The precise
FPGA used is expected to only have limited influence on
the observed results, as long as the specified logic circuit
(Gateware) can be synthesized for and thus represented on the
FPGA, and all timing constraints are met. For completeness,
the specifications are provided nonetheless: for this project,
a NetFPGA-1G-CML board containing a Xilinx Kintex-7
XC7K325T FPGA is used. It features RTL8211 IEEE 802.3
Ethernet transceivers (PHYs), which do not have any IEEE
1588 timestamping capabilities by themselves. The FPGA is
connected to an external 200 MHz low-jitter oscillator [10].

The logic synthesized for the FPGA must include all aspects
required for a software stack as described in Section IV-F.
This includes a Central Processing Unit (CPU), on which the
embedded OS along with the PTP software stack and synthetic
workloads can be executed. Furthermore, it must be able to
drive required peripherals, such as the attached RTL8211 IEEE
802.3 Ethernet transceivers. Finally, it must include some local
clock as mandated by IEEE 1588 and feature at least a PPS
output to be able to measure the synchronization accuracy
against the PTP Grandmaster [1, p. 38].

To generate the FPGA logic description in a Hardware
Description Language (HDL) that can be used to synthesize
a so-called bitstream for the FPGA, the free-software project
LiteX is used. LiteX is a SoC builder and can be used to
generate full FPGA designs, incorporating cores such as CPUs,
timers or other peripherals [11]. Different parts of the design
are interconnected using a bus protocol, such as Wishbone3.
Logic designs generated by LiteX, incorporating a CPU,
memory and other peripherals, are architecturally sufficiently
close to commodity microcontrollers.

The LiteX design describing the DUT hardware is cen-
tered around a VexRiscv4 CPU core, implementing the RISC-
V 32 bit integer instruction set with support for hardware
multiplication and compressed (16 bit) instructions, referred
to as rv32imc. All components of the system are intercon-
nected through a 32 bit-wide Wishbone bus. Other subsystems
connected to this bus include a 1 MB SRAM memory syn-
thesized on the FPGA, a Universal Asynchronous Receiver
Transmitter (UART) core for serial communication, a 64 bit-
wide hardware timer and a LiteEth Gigabit Ethernet core.

3https://cdn.opencores.org/downloads/wbspec b4.pdf
4https://github.com/SpinalHDL/VexRiscv

http://linuxptp.sourceforge.net/
https://cdn.opencores.org/downloads/wbspec_b4.pdf
https://github.com/SpinalHDL/VexRiscv


The system, including all timers, is driven by a 100 MHz
clock signal generated through a Xilinx Mixed-Mode Clock
Manager module based on the external 200 MHz precision
oscillator on the NetFPGA-1G-CML board.

Furthermore, the DUT hardware features an adjustable
clock peripheral, as described in Section IV-C. This peripheral
is implemented using a counter driven by the system-global
100 MHz clock signal. It exposes a register-based interface
to the VexRiscv-CPU, which can be used to either set (using
absolute values) or modify (using relative values) the current
timer value. Furthermore, the CPU can instruct the module
to adjust the frequency of the clock through a 32 bit signed
fractional frequency control value. For example, setting the
frequency adjustment to 3 would cause the clock to operate at
1 + 1

3 = 1.3 times its reference oscillator, whereas setting −4
would cause the clock to operate at 1 − 1

4 = 0.75 times its
reference oscillator. The CPU can further request an electrical
pulse to be issued when the current timer value is evenly
divisible by some divisor. The timer will not skip or issue
duplicate pulses because of a fractional frequency adjustment.

C. DUT Software

The synthesized SoC must further be matched with soft-
ware, in accordance with the analysis of Section IV-F. In
particular, it must be compatible with the synthesized hard-
ware and implement a PTP software stack. For this research
project, the Tock embedded operating system5 has been ported
to work on LiteX SoCs with a VexRiscv CPU. Tock is a
novel embedded operating system targeting low-power and
low-resource microcontrollers. It can run on systems having
48 MHz clock speed and featuring as little as 64 kB of main
memory. Tock consists of a monolithic kernel and unprivileged
userspace applications, interacting through system calls. One
of its key distinguishing features is its use of language-based
and type-system-based isolation mechanisms in the kernel.
This is achieved by writing the kernel almost exclusively in the
Rust programming language, and utilizing Rust’s fundamental
safety and ownership models, and type system. This means
that significant parts of the kernel code must be trusted
only to eventually give control back to the core kernel, and
are otherwise limited by the bounds provided through the
type system. This reduces the risk of vulnerabilities caused
by implementation errors. Examples include working with
variable-length buffers provided by applications or networked
systems, which frequently lead to buffer overflows in other
languages [12]. The unprivileged userspace applications are
isolated through hardware isolation mechanisms, such as the
RISC-V Physical Memory Protection (PMP) module. The
Tock kernel is cooperatively scheduled and has full control
over the hardware, whereas the userspace is preemptively
scheduled by the kernel. As Rust is used to implement the
Tock kernel, no Garbage Collector (GC) is used, enabling
deterministic system behavior [13], [14].

5https://tockos.org/

Because of these characteristics, Tock represents a reason-
able choice for the DUT software stack. Especially the low
resource requirements, together with the ability to run multiple
mutually distrustful applications within a single such system
emphasizes the economic advantage of using such an OS to
implement a PTP slave clock device. In addition to that, the
deterministic, cooperatively scheduled and privileged kernel
written in Rust provides a viable target for implementing
time-critical parts of the PTP software stack. Further, Tock
meets the requirements of Section IV-F, is a full embedded OS
and supports running multiple workloads in a pseudo-parallel
fashion [13].

Tock does not currently have a full TCP/IP stack present in
the kernel, and does not implement protocols required to estab-
lish socket-based communication with other devices in a Local
Area Network (LAN) network, such as Address Resolution
Protocol (ARP) or IPv6 Neighbor Discovery (ND), Internet
Protocol (IP) and UDP. Instead, to allow communication of
PTP messages and other common LAN protocols, a TAP-like
driver for implementing a Layer-2 IEEE 802.1 transport in
userspace is implemented as part of this work. This TAP-
interface is in turn connected to the hardware IEEE 802.3 Eth-
ernet MAC driver for the DUT’s LiteEth Ethernet MAC. Such
a setup enables userspace applications to implement a full
TCP/IP network stack and communicate with other network
devices using commodity protocols like ARP, Internet Control
Message Protocol (ICMP) and UDP. For implementing the
TCP/IP protocol stack in userspace, the free and open source
LwIP library6 is used. While a TCP/IP stack implemented in
the Tock kernel might be significantly more efficient compared
to an implementation as part of a userspace application, this
strategy requires far less implementation effort. By acquiring
and associating timestamps to incoming and outgoing IEEE
802.1 frames in the kernel and passing them to the LwIP net-
work stack, implementing the packet processing in userspace
should not have any impact on the precision of the acquired
timestamps.

Whereas a userspace application is used to manage vari-
ous aspects of the DUT network communication, many core
aspects of PTP are implemented within the Tock kernel as
untrusted (capsule) code. This is to minimize the interactions
across the userspace–kernel boundary during the operation of
the PTP state machines and to use the predictable timing
characteristics of the Tock kernel for time-critical sections of
the PTP implementation. For instance, because of the afore-
mentioned hardware memory isolation mechanisms, setting
a hardware clock memory-mapped register from userspace
would require a system call into the Tock kernel, which can
introduce unpredictable delays [13].

Notably, as an attempt to compensate potential errors in the
acquisition of PTP message timestamps, the PTP implementa-
tion as part of the Tock kernel further includes a PTP message
low-pass filter. This filter uses a metric defined on incoming
PTP messages along with their timestamps and, depending on

6https://savannah.nongnu.org/projects/lwip/
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whether the measurement is deemed in bounds with respect to
this metric, forwards the PTP messages to the PTP stack for
further processing. For sync-messages, the metric is defined
on a pair of subsequent messages, as the ratio of the increase
of the reported master time and slave time of the slave device’s
monotonic local clock:

msync(a, b) =
b.master time− a.master time

b.slave time− a.slave time
.

For delay-request-messages and delay-response-messages, the
metric is defined on a pair of complete delay measurements,
through the ratio of the increase of the master receive times
and slave send times:

mdelay(a, b) =
b.master receive− a.master receive

b.slave send− a.slave send
.

These values are compared to the last n sync-messages or
delay-measurements respectively, with the highest and lowest
m deviations from the mean filtered out. Thus, if the current
measurement has a comparatively high deviation from the
mean observed metric over the past m measurements, it is
not considered for further processing.

D. Synchronization / Syntonization Accuracy Measurement
System

As discussed in Section IV-C, the DUT’s synchronization
and syntonization accuracy shall be evaluated by comparing
the PPS output of the PTP Grandmaster and PTP slave (DUT)
devices. Both devices issue a 1-PPS pulse on the start of
each second. The delay between these pulses, as well as the
variance of these delays, can provide information about the
synchronization and syntonization of the DUT’s PTP slave
clock to the Grandmaster’s PTP clock.

To automatically measure these delays over a long-running
measurement series, a Swabian Instruments Time Tagger 20
device is used. This device is a so-called Time-to-Digital-
Converter (TDC), being able to measure the delay between
incoming events (pulses) with a RMS jitter of 34 ps. The
resulting Time Tag Stream can be sent to a PC for further
analysis, for example autocorrelation of events occurring on
two input channels [15].

Therefore, the measurement system as seen in Figure 6
consists of the Time Tagger 20, the Grandmaster PTP clock
and the DUT. The Grandmaster is connected over a standard,
short 1000BASE-T link as described in the previous sections.
Furthermore, both the Grandmaster PTP clock’s 1-PPS output,
as well as a digital output of the DUT FPGA are connected
to an input channel on the Time Tagger 20 respectively. It
should be noted that an amplifier circuit is used in between
the Grandmaster PPS output and the Time Tagger 20 input to
support the resistive load (50 Ω line termination) imposed by
the Time Tagger device. This adds a constant delay to pulses
issued by the Grandmaster PTP device, which is below 1 µs
as verified using an oscilloscope, but must be accounted for.

Fig. 6. Photo of the complete measurement system. In the front, the Time
Tagger 20 Time-to-Digital-Converter is connected to both the NetFPGA-1G-
CML FPGA card behind it, as well as to the Solarflare Communications NIC
mounted in a PCIe slot of the measurement computer. The PPS output of the
Solarflare NIC is amplified by the circuit on the right hand side to support the
line-termination resistive load imposed by the Time Tagger 20. The FPGA
outputs connected to the Time Tagger have a 330 Ω resistor placed in series
to reduce the current provided by the FPGA.

VI. STATISTICAL EVALUATION OF CLOCK STABILITY AND
SYNCHRONIZATION / SYNTONIZATION ACCURACY

To properly evaluate the synchronization and syntonization
accuracy of the two PTP clocks as described in Section V-D,
proper statistical methods must be selected. Furthermore,
Section IV-C describes that the synchronization and syntoniza-
tion measurement architecture works under the assumption
that, compared to the DUT’s PTP slave clock oscillator, the
PTP Grandmaster uses a comparatively stable oscillator, with
high short-term stability. This assumption shall be verified to
ensure the statistical relevance of measured PTP slave clock
synchronization and syntonization accuracy.

A well defined, periodic delay measurement of two syn-
chronized and syntonized independent clocks, such as a time-
correlation of 1-PPS outputs, yields only a cumulative error of
various influences. This has been discussed in Section IV-C.
With the goal of this paper being to analyze the feasibility
of using commodity microcontrollers for time synchronization
through IEEE 1588 PTP, it is important to isolate these
different error sources. As their individual effect cannot be
observed directly, other statistical methods have to be used to
acquire estimates of the quantitative influences of these effects
on observed results.

A naı̈ve approach to estimate clock stability behavior of
one clock with respect to another could be to use the standard
variance or deviation of the delays between any two observed



and correlated 1-PPS pulses. However, the standard variance is
based on expressing the expected deviation from the average.
In the case of two clocks this would be the average difference
in time passed between two subsequent events of the two
clocks. Though, this average is not necessarily stable over
time, for example due to clock drift, and as such the standard
deviation does not converge for some noise types [16]. Be-
cause long-term divergence of two clocks is in general reduced
or prevented when using proper synchronization mechanisms,
these characteristics primarily affect the measurements of
long-term stability and accuracy of free running clocks.

Instead, the two-sample variance or Allan variance and the
corresponding Allan deviation overcome these issues by using
the differences of subsequent frequency deviations. The two-
sample Allan variance is defined as

σ2
y(τ) =

1

2(M − 1)

M−1∑
i=1

[yi+1 − yi]2,

with yi being the ith of M fractional frequency values aver-
aged over the measurement interval τ [16]. The Allan variance
can further be extended to the overlapping Allan variance,
which uses all available overlapping samples at each averaging
time τ to gain confidence in the observed two-sample Allan
variance estimate.

However, the Allan variance and its derivative variances
only give an estimate of a clock’s frequency or time stability
behavior with respect to a reference clock. Therefore, it may
well be the case that the reference clock itself can be the source
of at least a part of the observed short-term and / or long-term
frequency / time deviation [17]. However, in [17] Gray and
Allan present a method (coined Three Cornered Hat method)
to estimate instabilities of each clock in a set of three clocks
[18]: assuming three independent oscillators, O = {A,B,C},
the frequency stability of each pair of oscillators can be
measured: {σ2

XY | {X,Y } ∈
(
O
2

)
}. As further described

in [17], by following the assumption that the oscillators are
independent and thus removing correlation terms, the equation
for the Allan variance (and its derivates) can be written as
shown in [18]:

σ2
XY (τ) = σ2

X(τ) + σ2
Y (τ).

Given a sufficient number of pairs of independent oscillators,
these equations can be solved for a particular oscillator yield-
ing, for example:

σ2
X(τ) =

1

2
(σ2
XY (τ) + σ2

ZX(τ)− σ2
Y Z(τ)).

In accordance with this method, the three oscillators in-
volved in the measurement setup described above – namely
the Grandmaster PTP clock, slave / DUT PTP clock and the
Time Tagger 20’s internal time base – are measured against
each other.

The results obtained by using the Three Cornered Hats
method with the Overlapping Allan Deviation to estimate
the clock stability characteristics of the clocks as part of the
measurement setup are shown in Figure 7 in a log–log graph.
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Fig. 7. Clock stability of the individual clocks in the measurement setup.
Calculated by the Three Cornered Hats method using the Overlapping Allan
Deviation. Error bars display 50σ.

With increasing τ , the calculated Allan Deviation represents
stability behavior for longer intervals of time. The measure-
ments displayed have been obtained by first synchronizing and
syntonizing the DUT PTP slave clock to the PTP Grandmaster
for 30 min, and then disconnecting the PTP communication
path between the DUT and the PTP Grandmaster. The devices
were subsequently running independently for 24 h, with the
PTP Grandmaster and slave issuing a 1-PPS signal respec-
tively. These pulses have been recorded with respect to the
Time Tagger’s internal time base, which allows to reconstruct
the time differences between pulses of the PTP Grandmaster
and slave devices.

The graph of Figure 7 shows that both the PTP Grandmaster
and the Time Tagger 20 time base have a significantly lower –
at least around one order of magnitude – short-term deviation
characteristics compared to the DUT’s internal oscillator.
However, all clocks seem to be approximately equally stable
when examining long-term behavior. Furthermore, the graph
shows defects in the results: for some τ in the Time Tagger
20’s estimation, in the graph visible for τ ∈ {6, 10, 19, 36},
σ(τ) < 0. Such imaginary Allan Deviations are not phys-
ically possible. According to Premoli and Tavella, violation
of positiveness in these inferred variances can be attributed
to (i) non-negligible uncertainty in the measured time dif-
ferences due to the measurement device, (ii) non-temporary
or pseudo-contemporary measurements of different pairs of
clocks, (iii) insufficient measurement samples, or (iv) violation
of the hypothesis that clocks are uncorrelated [19]. Given
(i) the measurement device is built to precisely measure
significantly smaller time differences, (ii) the measurement
series of all pairs of devices are recorded with respect to a
common time base, and (iv) each measurement consists of
24 h∗60 min∗60 s = 86400 data points, (iv) is the most likely
explanation. The hypothesized correlation can be explained



through two observations:

1) The three clock devices are electrically interconnected
and reside in the same environment. Therefore, they are
subject to common environmental influences, such as the
surrounding temperature. Two devices (the Grandmaster
Ethernet network adapter and the DUT FPGA board) are
further powered by the same commodity PC power supply
unit.

2) While the time deviation of the Time Tagger and one of
the PTP clocks, issuing a 1-PPS pulse, can be measured
by only involving two devices – the respective clock and
the Time Tagger itself – this is not possible for measuring
the deviation between the PTP Grandmaster and slave
devices. The 1-PPS pulses issued by both devices are
recorded by the Time Tagger with respect to its internal
time base. This can be used to mathematically reconstruct
the time difference between those two pulses. However,
this reconstruction uses the Time Tagger’s time base,
and thus may leak the Time Tagger’s internal oscillator
behavior into this measurement series.

Even with these imprecisions and defects in the clock stability
estimates, the observed results confirm the conjecture of the
PTP Grandmaster clock having high short-term stability com-
pared to the PTP slave clock, as postulated in Section IV-C.
This ensures that the PTP slave clock synchronization and syn-
tonization accuracy will not overproportionally suffer because
of a poor short-term clock stability of the PTP Grandmaster.

For measuring time stability in a time distribution system,
such as a PTP domain, Riley and Howe recommend using the
time Allan variance σ2

tdev(τ) = τ2

3 σ
2
mdev(τ) and its respective

time Allan deviation σtdev(τ) =
√
σ2

tdev(τ). The time Allan
variance is defined based on the modified Allan variance
as defined in [16, p. 17]. The modified Allan variance is
an extension of the Allan variance, including an additional
phase averaging operation. The time Allan deviation has a
distinct advantage of being equal to the standard deviation for
white phase modulation noise [16]. Furthermore, while other
Allan variances are dimensionless, the time Allan deviation
is expressed in seconds, allowing for quantization of the
expected synchronization error in a time distribution system
[20]. Thus, σtdev is to be used as a measure for estimating the
synchronization accuracy between the PTP Grandmaster and
slave devices.

However, the time Allan deviation σtdev(τ) for the entire
range of τ ∈ [1 s; t], where t is the complete measurement
duration, is not interesting. Because of the fact that the PTP
clocks are synchronizing, limτ→∞ σtdev(τ) = 0, as proper
synchronization effectively prevents long-term drift. This is
illustrated in Figure 8 by an example plot of σtdev(τ) for
τ ∈ [1 s; 6 h] of two synchronizing clocks. Rather, the short-
term clock deviation (τ ≈ 1 s) characterizes the clock syn-
chronization and syntonization accuracy. As the (time) Allan
deviation compares subsequent fractional frequency differ-
ences ∆yi averaged over the measurement interval τ , for
synchronizing clocks and τ ≈ 1 s, σtdev(τ) ∝∼ σstddev{∆pj},
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Fig. 8. Time Allan deviation over differences between corresponding 1-PPS
pulses of the PTP Grandmaster and slave clocks (phase offsets), while they
are synchronizing. The time Allan deviation converges to 0 because of the
continued synchronization. Error bars display 50σ.

∆pj being the time difference between corresponding jth 1-
PPS pulses issued by both clocks. This is confirmed by Riley
and Howe, stating that for white phase noise the time Allan
variance is equal to the standard variance [16, p. 18]. Thus
σtdev(τ ≈ 1 s) expresses the sum of oscillator errors in both
the PTP Grandmaster and slave clocks since the last synchro-
nization up to the 1-PPS pulse generation, as well as errors
introduced as part of the synchronization and syntonization.
Hence, this measure will be used as the primary indicator for
PTP synchronization accuracy. Further characteristic defects in
the clock synchronization behavior may be analyzed by other
statistical instruments and visual inspection of the data.

VII. EVALUATION OF MEASUREMENT DATA

In accordance with the previous sections and the problem
statement of Section III, the synchronization behavior and
accuracy between the PTP Grandmaster and DUT PTP slave
systems is to be measured.

A. Measurements overview
All measurements are conducted over a period of 6 h, which

leads to approximately 21600 1-PPS pulses issued by both the
Grandmaster and slave PTP clock devices. The offset between
these pulses is recorded by the Time Tagger 20 device using
an auto-correlation measurement series. These phase offsets
are used to reconstruct the fractional frequency differences, as
required for the calculation of the Allan variance.

In general, each measurement is based on a set of software
configuration options of the DUT, hardware configuration
options and simulated external influences. Internal variables
for the device under test include:

1) the implemented PTP timestamp point. This is the point
where a timestamp of a given PTP message, for ingress
as well as egress, is acquired within the DUT.



2) whether or not a software low-pass filter is applied to
acquired PTP message timestamps to detect inaccurate
measurements.

3) simulated system loads through multiple applications
running simultaneously.

4) whether syntonization is enabled, or PTP only performs
clock synchronization.

To simulate external events to be handled by the device, a
random interrupt generator core is added to the FPGA design.
This core uses a Linear Feedback Shift Register (LFSR)-based
Pseudorandom Number Generator (PRNG), producing the bit
sequence PRBS31 with polynomial x31+x28+1, being statis-
tically random within the sequence length of 2 147 483 647 bit.
The DUT can instruct the random interrupt generator to
reduce the statistical frequency of interrupts relative to the
SoC’s clock speed, by use of a frequency division register.
The frequency divisor is tuned such that approximately 1500
interrupts will be issued per second. The interrupts are not
queued, so the DUT’s OS must acknowledge each interrupt
prior to the next being issued.

Furthermore, artificial system load is simulated by running
an additional process on the Tock OS, next to the applica-
tion implementing the LwIP TCP/IP stack processing PTP
packets. This additional application continuously executes the
algorithm by Dik T. Winter to calculate π to 800 decimal
digits7. This application imposes computational load on the
system and produces a large amount of system calls and serial
output.

The implemented PTP timestamp point is suspected to have
a large influence on the overall achievable synchronization ac-
curacy and makes the device susceptible to other error sources
within the system. Assuming that the hardware-based Ethernet
MAC packet handling has constant time characteristics, it
should still be reliable regardless of other system behavior.
However, chip interrupt handling, the OS kernel architecture,
and process scheduling can all introduce significant additive
second-order deviations from the PTP reference message time-
stamp point [1, p. 79]. Other system design choices, as well
as the system’s environmental influences such as interrupt
frequency, can also have a significant influence on the achiev-
able synchronization precision. Hence, the combination of
various implemented PTP timestamp points across the system
architecture, along with some variation of other system prop-
erties is expected to provide sufficient information to derive
conclusions about the achievable precision of PTP in generic
microcontroller systems with different system properties.

B. Measurement results

The relevant measurement series’ time Allan deviations for
small τ can be seen in Figure 9. Furthermore, the measurement
series are described in Table I, along with their primary system
characteristics, as well as overlapping Allan deviation values
for specific values of τ . In addition to that, Table I also lists the
average time difference between two correlated 1-PPS pulses

7https://crypto.stanford.edu/pbc/notes/pi/code.html
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Fig. 9. Plot of the time Allan deviations of the measurements outlined in
Table I. τ ∈ [1 s; 500 s].

of the PTP Grandmaster and slave devices, ∆p, in seconds.
While this measurement is relevant to estimate the absolute
synchronization precision of calibrated devices in the field, it
is less relevant for this work: software-based adjustments can
reliably compensate this measured phase offset during device
calibration, if these offsets remain constant in the short and
long term.

As a baseline measurement, the DUT is configured to use
the hardware timestamp abilities of the DUT’s Ethernet MAC.
Furthermore, the software low-pass filter for captured PTP
message timestamps is disabled. No additional system load
through a process running on the Tock OS is simulated and
syntonization through PTP is enabled. The device operates
at 100 MHz and does not experience artificially generated
interrupts. As can be seen in measurement series A, the DUT
achieves a high degree of synchronization accuracy under
these conditions: for τ = 1, the time Allan deviation is at
approximately 28 ns.

Notably, enabling the software low-pass filter on PTP
sync and delay measurement messages when using hardware-
acquired timestamps reduces the measured accuracy. This
can be observed in measurement series E, compared to the

https://crypto.stanford.edu/pbc/notes/pi/code.html
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A Hardware (LiteEth MAC) 3 7 7 7 Cooperative 2.8e−8, 3.4e−8, 1.9e−8 −8.6e−7
B Hardware (LiteEth MAC) 3 7 7 3 Cooperative 8.7e−8, 5.6e−8, 4.2e−8 −5.6e−7
C Hardware (LiteEth MAC) 3 7 3 3 Priority (TAP network) 1.9e−7, 7.2e−8, 4.5e−8 −6.6e−7
D LiteEth kernel driver 3 3 7 7 Cooperative 1.5e−7, 1.4e−7, 6.9e−8 −9.6e−6
E Hardware (LiteEth MAC) 3 3 7 7 Cooperative 1.5e−7, 1.8e−7, 1.2e−7 −6.8e−7
F Hardware (LiteEth MAC) 3 3 3 7 Cooperative 1.5e−7, 1.8e−7, 1.1e−7 −6.8e−7
G Hardware (LiteEth MAC) 3 3 7 3 Cooperative 1.6e−7, 1.8e−7, 1.0e−7 −5.1e−7
H Hardware (LiteEth MAC) 7 3 7 7 Cooperative 2.2e−7, 5.8e−7, 1.6e−7 −1.9e−6
I LiteEth kernel driver 3 3 3 7 Round Robin 8.7e−7, 3.7e−7, 1.5e−7 −2.5e−5
J LiteEth kernel driver 3 7 7 7 Cooperative 1.6e−6, 3.8e−7, 9.4e−8 −8.7e−6
K Userspace (Packet callback) 3 3 7 7 Cooperative 3.4e−6, 1.9e−6, 1.1e−6 −6.4e−4
L Userspace (Packet callback) 3 3 3 7 Priority (TAP network) 8.0e−6, 7.6e−6, 4.1e−6 −6.2e−4
M Userspace (Packet callback) 3 3 3 3 Priority (TAP network) 2.6e−3, 1.4e−3, 4.6e−4 −6.9e−4
N Userspace (Packet callback) 3 7 3 7 Round Robin 1.7e−2, 4.7e−3, 1.2e−3 −3.8e−3
O Userspace (Packet callback) 3 7 3 7 Cooperative 9.2e−2, 2.9e−2, 1.3e−2 −2.4e−3

TABLE I
MEASUREMENT SERIES

otherwise identical measurement series A with the low-pass
filter disabled. This behavior can be explained through the
particular implementation strategy of the low-pass filter. The
low-pass filter is implemented using a floating-window of
the past n observations for sync and delay measurements
respectively, and filtering the largest mp positive and mn

negative deviations from the mean observed values. Even if all
incoming measurements are precise, out of the last m obser-
vations there must be 2m observations with a higher deviation
from the mean observed value for the current observation to
not be filtered. This implies that, in contrast to measurement A,
in measurement E the DUT’s local PTP clock will occasionally
be free-running for longer than 2logSyncInterval = 1 s and
thus experience clock noise and drift.

Disabling the PTP clock syntonization, and only performing
a synchronization of the absolute PTP Grandmaster’s time
will also decrease the synchronization accuracy, as shown in
measurement series H. Furthermore, the time Allan deviation
increases with larger τ , before converging towards 0 along
with the other plotted measurements. This can be potentially
explained by the fact that both the PTP Grandmaster and
DUT slave clocks experience frequency drift. As this drift
is not corrected, it can become significant for some values
of τ , whereas for τ → ∞ the continued absolute time
synchronization makes the frequency offset between these
clocks insignificant.

As shown by measurement series B, enabling the generation
of randomly distributed interrupts through the random interrupt
generator core, while acquiring PTP timestamps using the
LiteEth MAC, does not significantly influence the observed
results. Compared to measurement series A is has a marginally
reduced accuracy. Measurement series E (without artificial
interrupts) and G (with artificial interrupts) perform virtually
identical. This confirms that the acquisition of hardware times-

tamps is – up to a certain degree – decoupled from other
system aspects, specifically the CPU and OS behavior, such
as handling of arriving interrupts.

However, as evident when comparing measurement series B
and C, even when acquiring timestamps through the LiteEth
MAC hardware of the FPGA, the synchronization accuracy
can degrade under the presence of additional system load. A
possible explanation for this observation is that this additional
system load and incoming events introduce additional delay
between the PTP captured timestamp point and the time
at which the DUT’s local PTP clock is adjusted. While
the DUT’s PTP implementation contains logic attempting to
adjust and correct for this additional, system-internal delay,
these observations hint at the fact that these compensation
mechanisms are in fact not able to entirely compensate system-
internal delays. Nonetheless, measurement series E and F show
that these effects can in some cases be compensated by the
PTP message low-pass filter.

When the PTP message timestamp is acquired in the LiteEth
MAC kernel driver instead, at least under some conditions,
similar performance compared to hardware-assisted times-
tamping can be achieved (refer to measurement series D).
This result can be attributed to a number of observations: first
of all, Tock has a conceptually simple method of reacting to
interrupts and dispatching the corresponding interrupt handler.
As an interrupt arrives, a context switch to the Tock kernel is
performed if the system is currently running a process, halting
any userspace process. Dispatching to a driver’s interrupt
handler can thus only be delayed by either an ongoing kernel
operation (given that the kernel is cooperatively scheduled)
or having pending interrupts with a higher priority. Thus,
if neither of the two aforementioned conditions are present,
the code-path from an arriving CPU interrupt to the kernel
driver’s interrupt handler is expected to have relatively deter-



ministic timing characteristics. Because conditions producing
additional delay when handling LiteEth MAC interrupts do
occur in practice, for example because of higher-priority
UART interrupts, using a low-pass filter significantly increases
the synchronization accuracy here. This behavior, as observed
with measurement series D and J, is in contrast to what can
be seen with hardware-assisted timestamping in A and E. It
thus further confirms the hypothesis postulated previously and
shows that the low-pass filter on PTP message timestamps can
be an effective means to improve on synchronization accuracy.

Moving the captured PTP message timestamp point into
the LwIP userspace process itself, immediately after it has
been scheduled because of an incoming packet or completed
transmission of an outgoing packet by the kernel, further
decreases the PTP synchronization accuracy. This is expected,
as significantly more code is involved between the LiteEth
MAC CPU interrupt, and the userspace application being
scheduled because of the incoming packet. In addition to
all delay and jitter sources when capturing the PTP message
timestamp in the LiteEth MAC driver, in case of an incoming
packet, the packet’s contents have to be copied into a userspace
buffer. Furthermore, a call to a function in userspace has to be
scheduled by the kernel. Tock organizes calls into userspace
applications in a queue structure. Thus, depending on the
current system state and scheduling algorithm used, a function
invocation in userspace has to wait for other pending function
calls, other processes, as well as the application signaling to
the kernel that it is able to receive a function call (called
yielding).

When only a single process is running on the Tock OS,
the scheduling algorithm does not meaningfully influence the
system behavior: the OS will simply always schedule the
single process as long as it is ready to execute. In contrast,
the scheduling algorithm has a significant influence on the
system behavior when running more than one process. Tock
provides different scheduling algorithms, such as Round Robin
which sequentially executes different processes in a loop, each
with a given time-slice. The Priority scheduler always executes
the highest-priority process which is ready to run, until it
voluntarily gives up control. Furthermore, the Cooperative
scheduler executes processes in a round-robin fashion until
it voluntarily gives up control.

In theory this means that running a process assigned the
highest priority with the priority scheduler implies this process
has the same responsiveness and time scheduled as running it
as the only process on the OS. As shown by measurement
series K and L, this assumption does not hold in practice.
This discrepancy between the expected and observed system
behavior is suspected to be caused by two implementation
artifacts of Tock: when a hardware interrupt or software event
occurs and a userspace process has been running prior to the
context switch into the kernel, the kernel must save the CPU
state and other information about the previous application prior
to calling the driver interrupt handler, taking additional time.
Furthermore, the previous process could have started kernel
operations which have observable effects even after the process

has relinquished control, such as UART I/O operations.
Enabling generation of randomly-distributed interrupts has

only limited effects on synchronization accuracy with the im-
plemented PTP message timestamp point in the LiteEth MAC
hardware or its kernel driver. In contrast to that, measurement
series L and M show that the PTP accuracy significantly
decreases by multiple orders of magnitude when the device
is subject to frequent interrupts and PTP message timestamps
are acquired in userspace. Because pending interrupts take
priority over outstanding tasks of processes, the Tock scheduler
will not schedule a userspace process until there are no more
pending interrupts. Even when a process is running, upon an
arriving interrupt, the system performs a context switch to
kernel mode and handles any outstanding interrupts before
the process is scheduled again. This implies a random and
potentially significant delay prior to the userspace application
being able to acquire a PTP message timestamp. Thus, the
PTP synchronization accuracy decreases accordingly, in this
case into the multi-millisecond range.

Even worse synchronization accuracy can be seen in mea-
surement series N and O. These use the Round Robin and
Cooperative scheduler, respectively. Thus the process running
the LwIP network stack and acquiring the PTP message
timestamps no longer has priority over the competing system
workloads. This causes the acquired PTP message timestamps
to have a very high delay and jitter, compared to the normative
PTP message timestamp point as defined by IEEE 1588.

C. Interpretation of measurement results

The measurement results as presented in the previous sec-
tion show how different implemented PTP message timestamp
points and system characteristics influence the achievable PTP
synchronization accuracy. Furthermore, the results allow to
draw conclusions of whether a PTP implementation without
hardware assistance is viable for specific application areas and
highlight important system characteristics which can serve as
design considerations for building systems.

In particular, an implemented PTP timestamp point close to
the underlying transport hardware provides less opportunities
for introducing delay and jitter between the implemented and
reference PTP timestamp points. Keeping these values low
is vital to achieve precise PTP clock synchronization and
syntonization.

In the context of a microcontroller platform without hard-
ware assistance for PTP, this implies that the PTP message
timestamps should be acquired as closed to the underlying
transport’s interrupt handler as possible. However, care must
be taken to reliably associated correct timestamps to incoming
PTP messages: if using an embedded operating system such
as Tock, which comprises a top-half and bottom-half interrupt
handling concept, acquiring the PTP message timestamp in
the top-half interrupt handler might not be possible. At this
stage of the interrupt handling process, only the fact that an
interrupt at the transport layer has occurred can be observed. A
captured timestamp cannot necessarily be reliably associated
with a particular packet as, for instance, multiple packets could



have been received until the bottom-half interrupt handler
is executed. Thus, the bottom-half interrupt handler of a
transport layer is a viable target to acquiring PTP message
timestamps which can be reliably associated with a particular
PTP message.

To suppress statistical outliers in acquired PTP message
timestamps, a low-pass filter on PTP messages as presented in
this work can be an effective utility. However, it can also neg-
atively influence the achievable PTP synchronization accuracy
if the local PTP clock’s instabilities outweigh potential errors
in the acquisition of PTP message timestamps.

If implementing the PTP message timestamp point in the
transport driver’s interrupt handler or comparable low-level OS
layers is not possible, implementing the PTP message time-
stamp point in upper OS layers up to and including userspace
applications can be possible while retaining PTP synchro-
nization accuracy in the multi-microsecond range. However,
this makes the captured PTP message timestamps significantly
more susceptible to other system behavior. System load and
external events such as interrupts can significantly degrade
PTP synchronization performance. Using priority or real-time
scheduling algorithms can help to compensate for these effects.

The observed 1-PPS two-sample deviations for hardware-
based timestamping of PTP messages are in the expected range
of sub-microsecond precision. While generally results obtained
when not utilizing hardware-based timestamping capabilities
are less accuracy, they are still promising:

Lédeczi, Nádas, Völgyesi, et al. present a distributed system
to accurately locate shooters in urban environments. Using
their synchronization method, multi-microsecond synchroniza-
tion accuracy can be achieved along their communication
paths [21]. Furthermore, phase-angle synchronization in 60 Hz
power grids requires multi-microsecond time synchronization
accuracy [22]. Given specific system constraints and acquiring
PTP message timestamps close to the interrupt handler, the
DUT as presented can achieve multi-microsecond and even
sub-microsecond synchronization accuracy; as such it appears
viable that such use cases are implemented using commodity
embedded systems not featuring hardware-based timestamping
capabilities.

VIII. CONCLUSION

This paper investigated the feasibility of PTP-based time
synchronization implementations in the context of embedded
systems, without explicit PTP hardware support. In particular,
it focused on determining estimates of the achievable accu-
racy of time synchronization and syntonization when utilizing
IEEE 1588 PTP, using a commodity Ethernet-based network
infrastructure and a PTP slave clock device without hardware-
timestamping capabilities for PTP messages.

To answer the aforementioned question, first, the relevant
details and mechanisms employed by the IEEE 1588 Preci-
sion Time Protocol standard have been reiterated. Following
that, important system characteristics and constraints were
analyzed. This served as a basis for designing a measurement
system which is a reasonably close approximation of an

embedded system requiring time synchronization. Based on
the identified relevant characteristics, a measurement system
architecture has been designed and implemented. This archi-
tecture specifies both, technical details of the hardware and
software components involved in the measurement system,
as well as methods to acquire and subsequently analyze the
measured results. To process the acquired data sets and confirm
basic assumptions of the previous sections, appropriate statis-
tical methods and measures were used. Finally, the acquired
measurement series have been presented, showing how the
accuracy of time synchronization using PTP changes under
different simulated internal and external system conditions.
This information has been used to deduce a cause-effect
relationship between the system conditions and the observed
results, and subsequently to derive advice for designing such
systems.

This paper shows that hardware-based timestamping of
PTP messages is not necessarily a requirement for operating
the IEEE 1588 Precision Time Protocol, at least for some
application areas. Even under difficult system conditions with
simulated workloads and external interrupts, a system using
purely software-based PTP message timestamping can achieve
a sub-microsecond two-sample deviation compared to the
respective PTP Grandmaster clock. However, when acquiring
PTP message timestamps in upper system layers such as
userspace applications, the achievable time synchronization
accuracy may decrease significantly. Thus, this should only
be done when the embedded system’s kernel or interrupt
handling logic cannot be modified to acquire timestamps of
PTP messages.

In this work, the performance of a single test system (Device
Under Test) has been observed under different simulated
system conditions. While care has been taken to design a
measurement system and DUT which is representative for
a broad range of microcontroller-based embedded systems,
future research may determine the generalizability of these
results. For example, different CPU architectures or multi-core
systems may potentially show different behavior.

Furthermore, the simulated workloads used in this analy-
sis may not be entirely representative of a real production
workload. Analyzing the DUT’s behavior while integrated in
a production system may allow for further application area
specific optimizations and can help to develop more advanced
software techniques to compensate errors in the acquired PTP
message timestamps.
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